SEMILEPTONIC B DECAYS, QUARK MASSES, AND CKM

PAOLO GAMBINO UNIVERSITÀ DI TORINO & INFN

MATTER TO THE DEEPEST, USTRON, 4/9/2013

S.L. DECAYS DETERMINE $|V_{ub}|$ and $|V_{cb}|$

 $B \rightarrow \tau \nu$ is not yet competitive

Since several years, exclusive decays prefer smaller $|V_{ub}|$ and $|V_{cb}|$

THE UNITARITY TRIANGLE

$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

sin2 β is measured directly in CP asymmetries in B \rightarrow J/ Ψ Ks

inclusives vs exclusives

Marcella Bona QMUI

INCLUSIVE VS EXCLUSIVE B DECAYS

INCLUSIVE DECAYS: BASICS

- Simple idea: inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows to express it in terms of B meson matrix elements of local operators
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: *double series in α_s, Λ/m_b*
- Lowest order: decay of a free *b*, linear Λ/m_b absent. Depends on $m_{b,c}$, 2 parameters at O(1/m_b²), 2 more at O(1/m_b³)...

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \left| \overline{b} (i \overline{D})^{2} b \right| B \right\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \left| \overline{b} \frac{i}{2} \sigma_{\mu\nu} G^{\mu\nu} b \right| B \right\rangle_{\mu} \right\rangle$$

THE TOTAL WIDTH IN THE OPE

$$\Gamma[B \to X_c l\bar{\nu}] = \Gamma_0 \ g(r) \left[1 + \frac{\alpha_s}{\pi} c_1(r) + \frac{\alpha_s^2}{\pi^2} c_2(r) - \frac{\mu_\pi^2}{2m_b^2} + c_G(r) \frac{\mu_G^2}{m_b^2} + c_D(r) \frac{\rho_D^3}{m_b^3} + c_{LS}(r) \frac{\rho_{LS}^3}{m_b^3} + O\left(\alpha_s \frac{\mu_{\pi,G}^2}{m_b^2}\right) + O\left(\frac{1}{m_b^4}\right) \right]$$

$$\Gamma_0 = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \qquad r = \frac{m_c^2}{m_b^2}$$

OPE valid for inclusive enough measurements, away from perturbative singularities moments

Present implementations include all terms through $O(\alpha_s^2, 1/m_b^3)$: $m_{b,c,} \mu^2_{\pi,G,} \rho^3_{D,LS}$ 6 parameters

EXTRACTION OF THE OPE PARAMETERS

Global shape parameters (first moments of the distributions) tell us about B structure, m_b and m_c , total rate about $|V_{cb}|$

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications (rare decays, $V_{ub},...$)

NEW SEMILEPTONIC FITS

Schwanda, PG, 1307.4551

- first fits to include all O(αs²) corrections and Czarnecki, Pak, Melnikov, Biswas 2008-10
- reassessment of theoretical errors, study of their correlations
- new external constraints: precise heavy quark mass determinations
- kinetic scheme calculation based on PG, 1107.3100; Uraltsev & PG,hep-ph/0401063

Previous fits: Buchmuller, Flaecher hep-ph/0507253, Bauer et al, hep-ph/0408002 (1S scheme)

THEORETICAL ERRORS DOMINATE

THEORETICAL CORRELATIONS

Correlations between theory errors of moments with different cuts difficult to estimate

- I. 100% correlations (unrealistic but used so far)
- 2. corr. computed from low-order expressions
- 3. constant factor 0<ξ<1 for 100MeV step
- 4. same as 3. but larger for larger cuts

always assume different central moments uncorrelated

THEORETICAL CORRELATIONS

CHARM MASS DETERMINATIONS

Remarkable improvement in recent years. m_c can be used as precise input to fix m_b

RESULTS: BOTTOM MASS

The fits give $m_b^{kin}(1\text{GeV})=4.541(23)\text{GeV}$, independent of th corr. scheme translation error $m_b^{kin}(1\text{GeV})=m_b(m_b)+0.37(3)\text{GeV}$

FIT RESULTS

th. corr. scenario	m_b^{kin}	$m_c^{(3G)}$	$eV)\mu_{\pi}^{2}$	$ ho_D^3$	μ_G^2	$ ho_{LS}^3$	$\mathrm{BR}_{c\ell\nu}(\%)$	$10^3 V_{cb} $
4.	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
uncertainty	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86

Without mass constraints $m_b^{kin}(1 \text{ GeV}) - 0.85 \overline{m}_c(3 \text{ GeV}) = 3.701 \pm 0.019 \text{ GeV}$

- results depend little on assumption for correlations and choice of inputs, 2% determination of V_{cb}
- 20-30% determination of the OPE parameters

HIGHER ORDER EFFECTS

- Reliability of the method depends on our ability to control higher order effect and quark-hadron duality violations.
- Purely perturbative corrections complete $O(\alpha_s^2)$ included, small residual error Melnikov, Czarnecki, Pak, PG
- **Power corrections** $O(1/m_Q^{4,5})$ known but involve many new parameters, numerical relevance under study. In vacuum saturation approx small effect on V_{cb} Mannel, Turczyk, Uraltsev
- **Mixed** perturbative corrections to power suppressed coefficients at $O(\alpha_s/m_b^2)$ almost finished, already known for $b \rightarrow s\gamma$ Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG

$O(\alpha_s/m_b^2)$ EFFECTS

 $W_3^{(\pi,n)} = \frac{5}{3}\hat{q}_0 \,\frac{dW_3^{(n)}}{d\hat{q}_0}$

Boos,Becher,Lunghi 2007 Alberti,Ewerth,Nandi,PG 2012

They can be in part computed using reparameterization invariance which relates different orders in the HQET

$$W_{i} = W_{i}^{(0)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,0)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,0)} + \frac{C_{F}\alpha_{s}}{\pi} \left[W_{i}^{(1)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,1)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,1)}\right]$$

For i=3 RPI at all orders

$$- rac{\hat{q}^2 - \hat{q}_0^2}{3} rac{d^2 W_3^{(n)}}{d\hat{q}_0^2}$$

Manohar 2010

good testing ground for the calculation. Proliferation of power divergences, up to $1/u^3$, and complex kinematics (q^2, q_0, m_c, m_b)

 $W_i^{(G,1)}$ are now ready! new results soon

EXCLUSIVE DECAY $B \rightarrow D^* \ell \nu$

At zero recoil, where rate vanishes, the ff is

$$\mathcal{F}(1) = \eta_A \left[1 + O\left(\frac{1}{m_c^2}\right) + \dots \right]$$

Recent progress in measurement of slopes and shape parameters, exp error only ~2%

The ff F(1) cannot be experimentally determined. Lattice QCD is the best hope to compute it. Only one unquenched Lattice calculation:

Laiho et al 2010

$$|V_{cb}| = 39.05(0.7)(0.6)10^{-3}$$

2.1% error (adding in quadrature) ~2.7 σ or ~8% from inclusive determination B→Dlv has larger errors: new $|V_{cb}|=40.2(2.0)\times10^{-3}$ <u>at non-zero recoil!</u> Qiu et al, Lattice 2013

ZERO RECOIL SUM RULE

Heavy quark sum rules put bounds on the zero recoil form factor F(1) for $B \rightarrow D^*$ Shifman, Vainshtein, Uraltsev 1996

- $\mathcal{F}(1) = \sqrt{I_0(\varepsilon_M) I_{inel}(\varepsilon_M)} \qquad \qquad \mathcal{F}(1) \le \sqrt{I_0(\varepsilon_M)}$ Unitarity bound $\mathcal{F}(1) < 0.935$
- Starting point OPE for axial vector current at zero recoil: expansion of *I*₀ in 1/*m*_c and 1/*m*_b and α_s
- Recent calculation incorporates higher order effects and estimates inelastic contributions Mannel, Uraltsey, PG 2012
- Estimate of inelastic (non-resonant) contribution is hard

THE INELASTIC CONTRIBUTION

$$I_1(\varepsilon_M) = -\frac{1}{2\pi i} \oint_{|\varepsilon| = \varepsilon_M} T(\varepsilon) \varepsilon d\varepsilon \qquad I_{inel}(\varepsilon_M) = \frac{I_1(\varepsilon_M)}{\bar{\varepsilon}}$$

 $\overline{\epsilon}$ represents the average excitation energy mainly controlled by the lowest radial (1/2⁺) and D-wave (3/2⁺) excitations, therefore about 700MeV

OPE:
$$I_1 = \frac{-(\rho_{\pi G}^3 + \rho_A^3)}{3m_c^2} + \frac{-2\rho_{\pi \pi}^3 - \rho_{\pi G}^3}{3m_c m_b} + \frac{\rho_{\pi \pi}^3 + \rho_{\pi G}^3 + \rho_A^3 + \rho_A^3}{4} \left(\frac{1}{m_c^2} + \frac{2}{3m_c m_b} + \frac{1}{m_b^2}\right) + \mathcal{O}\left(\frac{1}{m_Q^3}\right)$$

in terms of little known non-local correlators of the form

$$\frac{i}{2M_B} \int d^4x \langle B|T\{O_i(x), O_j(x)\}|B\rangle' \qquad O \sim \bar{b} \,\pi_k \pi_l \, b$$

 $\rho_{\pi\pi}^{3} + \rho_{\pi G}^{3} + \rho_{S}^{3} + \rho_{A}^{3} \ge 0$

each of them is integral of spectral function with specific spin structure e.g. $\rho_{\pi\pi}^3 = \int_{\omega>0} d\omega \frac{\rho_p^{(\frac{1}{2}^+)}}{\omega}$

ESTIMATING THE NON-LOCAL GUYS

Hyperfine splitting

$$\Delta M_Q^2 = M_{Q^*}^2 - M_Q^2 = \frac{4}{3} c_G(m_Q) \mu_G^2 + \frac{2}{3} \frac{\rho_{\pi G}^3 + \rho_A^3 - \rho_{LS}^3 + 2\bar{\Lambda}\mu_G^2}{m_Q} + O\left(\frac{1}{m_Q^2}\right)$$

Experimentally $\Delta M_B^2 \simeq \Delta M_D^2$

within a ~25% uncertainty

 $ho_{\pi G}^3 +
ho_A^3 \approx -0.45 {
m GeV}^3$

From $\overline{M}_B - \overline{M}_D$ and moments fits $\rho_{\pi G}^3 + \rho_A^3 \lesssim -0.33 \text{GeV}^3$

with somewhat larger uncertainty

These are strong indications that non-local guys are larger than expected. Based on a BPS expansion we get a minimum $I_{inel}(\varepsilon_M \sim 0.75 \text{GeV}) \gtrsim 0.14 \pm 0.03$

using the <u>lowest</u> value of *I*_{inel} and interpreting the total uncertainty as gaussian which leads to

$$\mathcal{F}(1) = 0.86 \pm 0.02$$

which leads to V_{cb} =40.9(1.1)10⁻³ in good agreement with inclusive V_{cb}

V_{cb} summary

Vub DETERMINATIONS

Inclusive: 5-6% total error

HFAG 2012	Average $ V_{ub} x10^3$
DGE	$4.45(15)_{\rm ex}^{+15}$ -16
BLNP	$4.40(15)_{\rm ex}^{+19}_{-21}$
GGOU	$4.39(15)_{\rm ex}^{+12}$ -14

Exclusive: 10-15% total error

$$|V_{ub}| = (3.25 \pm 0.31) \times 10^{-3}$$
MILC
$$|V_{ub}| = \left(3.50^{+0.38}_{-0.33}\Big|_{th.} \pm 0.11\Big|_{exp.}\right) \times 10^{-3}$$

LCSR, Khodjamirian et al, see also Bharucha

$B \rightarrow \pi lv$ data <u>poorly consistent!</u>

2.7-3 σ from B $\rightarrow\pi$ lv (MILC-FNAL) 2 σ from B $\rightarrow\pi$ lv (LCSR, Siegen) 2.5-3 σ from UTFit 2011

UT fit (without direct V_{ub}): V_{ub} =3.64(13) 10⁻³

The discrepancy here is around 25% !!

Vub IN THE GGOU APPROACH

PG,Giordano,Ossola,Uraltsev

NEW PHYSICS?

LR models can explain a difference between inclusive and exclusive V_{ub} determinations (Chen,Nam)

Also in MSSM (Crivellin)

BUT the RH currents affect predominantly the exclusive V_{ub} , making the conflict between V_{ub} and $\sin 2\beta$ (ψK_s) stronger...

Buras, Gemmler, Isidori 1007.1993

SUMMARY

- Theoretical efforts to improve the OPE approach to semileptonic decays continue, more results soon. No sign of inconsistency in this approach so far.
- New fit results: interesting m_b determination based on precise m_c
- HQSR calculation of zero recoil $B \rightarrow D^*$ form factor agrees with inclusive determination of V_{cb} , unlike FNAL lattice one
- Exclusive/incl. tension in V_{ub} remains misterious (2-3 σ). It could be explained by right-handed current... Belle-II will increase significantly the statistics for $b \rightarrow ul\nu$ decays. Measurement of spectra will enable direct constraints on shape function(s).

BACK-UP SLIDES

PERTURBATIVE EFFECTS

- $O(\alpha_s)$ implemented by all groups De Fazio, Neubert
- Running coupling $O(\alpha_s^2\beta_0)$ (PG,Gardi,Ridolfi) in GGOU, DGE lead to -5% & +2%, resp. in $|V_{ub}|$
- Complete $O(\alpha_s^2)$ in the SF region Asatrian, Greub, Pecjak-Bonciani, Ferroglia-Beneke, Huber, Li G. Bell 2008
- In BLNP leads to up 8% increase in V_{ub} related to resummation, not yet included by HFAG. It is an **artefact** of this approach.

• $P_+ <$	0.66	GeV:
-----------	------	------

	$\Gamma_u^{(0)}$	μ_h	μ_i
NLO	60.37	$^{+3.52}_{-3.37}$	$^{+3.81}_{-6.67}$
NNLO	52.92	$^{+1.46}_{-1.72}$	$^{+0.09}_{-2.79}$

Greub, Neubert, Pecjak arXiv:0909.1609

• $P_+ < 0.66$ GeV:

Fixed-Order	$\Gamma_u^{(0)}$	μ
NLO	49.11	$+5.43 \\ -9.41$
NNLO	49.53	$^{+0.13}_{-4.01}$

NEW: full phase space O(α_s²) calculation Brucherseifer, Caola, Melnikov, arXiv:1302.0444

Confirms non-BLM/BLM approx 20% over relevant phase space

EXCLUSIVE V_{ub} **FROM** $B \rightarrow \pi l v$

Here there is no preferred point in phase space. Lattice and light-cone sum rules estimate form factor.

Recent lattice based: MILC collaboration

Recent sum-rules based:

Khodjamirian, Mannel,Offen,Wang 2011 see also Bharucha

Precision is improved by fitting lattice/LCSR together with data

Experimental data are not well consistent

 $|V_{ub}| = (3.25 \pm 0.31) \times 10^{-3}$

$$|V_{ub}| = \left(3.50^{+0.38}_{-0.33}\Big|_{th.} \pm 0.11\Big|_{exp.}\right) \times 10^{-3}$$

THE TOTAL $B \rightarrow X_{U} \ell \nu$ WIDTH

$$\begin{split} \Gamma[\bar{B} \to X_{u}e\bar{\nu}] &= \frac{G_{H}^{2}m_{b}^{5}}{192\pi^{3}}|V_{ub}|^{2} \left[1 + \frac{\alpha_{s}}{\pi}p_{u}^{(1)}(\mu) + \frac{\alpha_{s}^{2}}{\pi^{2}}p_{u}^{(2)}(r,\mu) - \frac{\mu_{\pi}^{2}}{2m_{b}^{2}} - \frac{3\mu_{G}^{2}}{2m_{b}^{2}} \\ &+ \left(\frac{77}{6} + 8\ln\frac{\mu_{WA}^{2}}{m_{b}^{2}}\right)\frac{\rho_{D}^{3}}{m_{b}^{3}} + \frac{3\rho_{LS}^{3}}{2m_{b}^{3}} + \frac{32\pi^{2}}{m_{b}^{3}}B_{WA}(\mu_{WA})\right] \\ &+ O(\alpha_{s}\frac{\mu_{\pi,G}^{2}}{m_{b}^{2}}) + O(\frac{1}{m_{b}^{4}})^{\bullet} \end{split}$$
Using the results of the fit, V_{ub} build be extracted if we had the total width...

CC

Weak Annihilation, severely constrained from D decays, see Kamenik, PG, arXiv:1004.0114

ZERO RECOIL SUM RULE

 $T(\varepsilon) = \frac{i}{6M_B} \int d^4x e^{-ix_0(M_B - M_D^* - \varepsilon)} \langle B|TJ_A^k(x)J_{Ak}(0)|B\rangle$

$$\varepsilon = M_X - M_{D^*}$$

$$I_0(\varepsilon_M) = -\frac{1}{2\pi i} \oint_{|\varepsilon| = \varepsilon_M} T(\varepsilon) d\varepsilon = \mathcal{F}^2(1) + I_{inel}(\varepsilon_M)$$

$$Inelastic non-resonant piece I_{inel}(\varepsilon_M) = \frac{1}{2\pi i} \int_{0+}^{\varepsilon_M} \operatorname{disc} T(\varepsilon) d\varepsilon$$

$$\varepsilon$$

$$\mathcal{F}(1) = \sqrt{I_0(\varepsilon_M) - I_{inel}(\varepsilon_M)}$$

$$\mathcal{F}(1) \leq \sqrt{I_0(\varepsilon_M)}$$

Unitarity bound