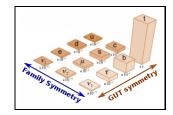

Attempts to explain neutrino masses and mixings using finite horizontal symmetry groups

B. Dziewit, S. Zajac, M. Zralek

University of Silesia


Matter to the deepest 06.09.2013 Ustron

Introduction

Hierarchy of mass

Hierarchy of mass is an open problem in elementary particle physics

Symmetry

One can try to relate this problems with symmetry.

Up to now we don't know any fundamental rule(s) giving relations between Yukawa couplings and Higgs expectation values.

... short wish list ...

From such a symmetry we expect that it will give:

- relations between Yukawa couplings
- in the case of New Physics: **relations** between vacuum Higgs expectation values ...
- ... and as a consequence relations among lepton masses, quark masses, mixing angles, CP phases ...

Indications for strong symmetry breaking

- big differences between quark masses in the same generation
- ... and between different generations
- different charged lepton masses

In quark sector mixing is small (perturbation?)

Why neutrino mixing?

Neutrino mixing is relatively big so it may be probably the best place to search non-perturbation, non-breaking, fundamental symmetry.

There are many ways one can introduce family symmetry into a model.

ContinuousDiscrete
$$U(1), SU(3)$$
 $S_3, A_4, T', S_4, A_5, \Delta(24)$

In general, we can classify two types of methods:

• ,,**bottom-up**":

experimental data ightarrow U_{PMNS} ightarrow u_i ightarrow G_i ightarrow G_F

• ,,**top-down**":

$$G_F \rightarrow G_i \rightarrow u_i \rightarrow U_{PMNS}$$

For ν SM

Let there exist flavour symmetry G_F , we have :

- For each Ψ = {L_L, ν_R} there exist 3 dimensional representation of G_F: (A^Ψ)
- For each Higgs multiplet Φ there exist (N_d × N_d) dimensional representation of G_F: (A^Φ)

Applying such a symmetry to Yukawa term:

$$L_{Y} = -\sum_{\alpha,\beta=e,\mu,\tau}^{3} h_{\alpha\beta}^{\nu} \left[\bar{L}_{\alpha L} \Phi \nu_{\beta R} \right] \Rightarrow -\sum_{i=1}^{N_{d}} \bar{L}_{\chi L} (\tilde{h}_{k}^{\nu})_{\chi,\delta} \Phi_{k} \nu_{\delta R} = L_{Y}^{\prime}$$

$$L'_{\alpha L} = (A^L)_{\alpha,\chi} L_{\chi L} \quad \nu'_{\beta R} = (A^{\nu})_{\beta,\delta} \nu_{\delta R} \quad \phi'_i = (A^{\phi})_{i,k} \phi_k$$

For ν SM

For symmetry we have: $L_Y = L'_Y \Rightarrow \tilde{h}^{\nu}_k = h^{\nu}_k$ so:

$$\sum_{i=1}^{N_d} \left(A^{L\dagger} h_i^{\nu} \left(A^{\phi} \right)_{i,k} A^{\nu} \right)_{\chi,\delta} = (h_k^{\nu})_{\chi,\delta}$$

$$M^{\nu}_{\alpha,\beta} = \frac{1}{\sqrt{2}} \sum_{i=1}^{N_d} v_i \left(h^{\nu}_i\right)_{\alpha,\beta} \quad \text{for one Higgs boson: } M^{\nu} = \frac{1}{\sqrt{2}} v h^{\nu}$$

$$M^{\nu\prime} = A^{L\dagger} \left(\frac{1}{\sqrt{2}} \sum_{i,k=1}^{N_d} v_i h_k^{\nu} \left(A^{\phi} \right)_{k,i} \right) A^{\nu} = M^{\nu}$$

Neutrino mass matrix

$$M^{
u \prime} = A^{L\dagger} M^{
u} A^{
u} = M^{
u}$$

For only one 3-dim representation of G_F :

$$A^{L} = A^{\nu} = A \Leftrightarrow A^{\dagger} M^{\nu} A = M^{\nu} \Leftrightarrow [M^{\nu}, A] = 0$$
$$A = G_{1}^{a} G_{2}^{b} G_{3}^{c}$$

where G_i are generators of G_F group and we have:

$$[\mathbf{M}^{\nu},\mathbf{G_{i}}]=\mathbf{0}$$

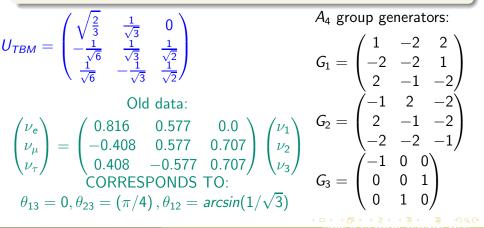
(1)

For one Higgs boson

In the base:

$$M' = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix} \Rightarrow U' = I \Rightarrow U_{PMNS} = U'^{\dagger} U^{\nu} = U^{\nu}$$

$$U_{PMNS}=(u_1,u_2,u_3)$$


 G_F generators can be expressed by:

$$G_{1} = u_{1}u_{1}^{\dagger} - u_{2}u_{2}^{\dagger} - u_{3}u_{3}^{\dagger}$$

$$G_{2} = -u_{1}u_{1}^{\dagger} + u_{2}u_{2}^{\dagger} - u_{3}u_{3}^{\dagger}$$

$$G_{3} = -u_{1}u_{1}^{\dagger} + u_{2}u_{2}^{\dagger} + u_{3}u_{3}^{\dagger}$$

In the days when the reactor angle of neutrino mixing was thought to be zero and the atmospheric angle maximal, mixings could be taken to be tribimaximal, and explained by A_4

Recent global fits and direct measurements show the reactor angle to be non-negligible and the atmospheric angle possibly non-maximal

Recent data:
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 0.819 & 0.551 & 0.158 \\ -0.512 & 0.581 & 0.632 \\ 0.256 & -0.599 & 0.758 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Many suggestions have been advanced to explain the new data.

There is no longer a group that can produce all the mixing data

o

o . . .

- neutrino mass scheme normal or inverted hierarchy
- Dirac or Majorana nature $\Rightarrow U_{PMNS}$ parametrization
- precise experimental data, mixing angles, masses
- sterile neutrino (?), (3+1, or 3+2 scheme)

Instead of summary: prospects

- Current tests for new experimental data
- Consider models with more Higgs bosons (doublet, double doublet, triplets, ...)
- Different symmetry in lepton and neutrino sector ...
- Models with sterile neutrinos . . .

