Fully differential decay rate of a SM Higgs boson into a b-pair at NNLO

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with
V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano

Matter to the Deepest 2015, Ustron
September 14, 2015

Higgs boson has been discovered

o $m_{H}[\mathrm{GeV}]=125.09 \pm 0.21_{\text {stat }} \pm 0.11_{\text {syst }}$ (CMS + ATLAS
Run 1: $\mathrm{yy}+4$ lepton)

- $\Gamma_{H}[\mathrm{MeV}]=1.7^{+7.7}{ }_{-1.8}$ (CMS), < 23 (95\%, ATLAS)
$\sigma / \sigma_{S M}=1.00 \pm 0.13$ (ATLAS)
- All measured properties are consistent with SM expectations within experimental uncertainties
- spin zero
- parity +
- couples to masses of W and Z (with $c_{v}=1$ within experimental uncertainty)
- Yet it still could be the first element of an extended Higgs sector (e.g. SUSY neutral Higgs)

Distinction requires high-precision prediction for both production and decay

Example: $\mathrm{pp} \rightarrow \mathrm{H}+\mathrm{X} \rightarrow \mathrm{b} \overline{\mathrm{b}}+\mathrm{X}$ in PT

- $\Gamma_{H}[\mathrm{MeV}]=4.07 \pm 0.16_{\text {theo }}$
\Rightarrow can use the narrow width approximation

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} O_{b \bar{b}}}=\left[\sum_{n=0}^{\infty} \frac{\mathrm{d} d^{2} \sigma_{p p \rightarrow H+X}^{(n)}}{\mathrm{d} p_{\perp, H} \mathrm{~d} \eta_{H}}\right] \times\left[\frac{\sum_{n=0}^{\infty} \mathrm{d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(n)} / \mathrm{d} O_{b \bar{b}}}{\sum_{n=0}^{\infty} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(n)}}\right] \times \operatorname{Br}(H \rightarrow \mathrm{~b} \overline{\mathrm{~b}})
$$

known up
to NNLO
this talk:
up to NNLO
known with
1\% accuracy

$\mathrm{pp} \rightarrow \mathrm{H}+\mathrm{X} \rightarrow \mathrm{b} \overline{\mathrm{b}}+\mathrm{X}$ in PT

Including up to NNLO corrections for production and decay:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} O_{b \overline{\mathrm{~b}}}}= & {\left[\frac{\mathrm{d}^{2} \sigma_{p p \rightarrow H+X}^{(0)}}{\mathrm{d} p_{\perp, H} \mathrm{~d} \eta_{H}} \frac{\mathrm{~d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)} / \mathrm{d} O_{b \overline{\mathrm{~b}}}+\mathrm{d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(1)} / \mathrm{d} O_{b \overline{\mathrm{~b}}}+\mathrm{d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(2)} / \mathrm{d} O_{b \overline{\mathrm{~b}}}}{\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)}+\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(1)}+\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(2)}}\right.} \\
& +\frac{\mathrm{d}^{2} \sigma_{p p \rightarrow H+X}^{(1)}}{\mathrm{d} p_{\perp, H} \mathrm{~d} \eta_{H}} \frac{\mathrm{~d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)} / \mathrm{d} O_{b \bar{b}}+\mathrm{d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(1)} / \mathrm{d} O_{b \bar{b}}}{\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)}+\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(1)}} \\
& \left.+\frac{\mathrm{d}^{2} \sigma_{p p \rightarrow H+X}^{(2)}}{\mathrm{d} p_{\perp, H} \mathrm{~d} \eta_{H}} \frac{\mathrm{~d} \Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)} / \mathrm{d} O_{b \bar{b}}}{\Gamma_{H \rightarrow \mathrm{~b} \overline{\mathrm{~b}}}^{(0)}}\right] \times \operatorname{Br}(H \rightarrow \mathrm{~b} \overline{\mathrm{~b}})
\end{aligned}
$$

CoLoRFulNNLO is a subtraction scheme with

CoLoRFulNNLO is a subtraction scheme with

\checkmark explicit expressions including flavor and color (color space notation is used)

CoLoRFulNNLO is a subtraction scheme with

\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)

CoLoRFulNNLO is a subtraction scheme with

$\sqrt{ }$ explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark fully local counter-terms
(efficiency and mathematical rigor)

CoLoRFulNNLO is a subtraction scheme with

$\sqrt{ }$ explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark fully local counter-terms
(efficiency and mathematical rigor)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)

CoLoRFulNNLO is a subtraction scheme with

\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark fully local counter-terms
(efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)
\checkmark option to constrain subtraction near singular regions (important check)
Completely Local SubtRactions for Fully Differential Predictions@NNLO

Explicit and general: structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, A_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RRR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right\} J_{m}\right.
\end{aligned}
$$

Explicit and general: structure

of subtractions is governed by the jet functions

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

$$
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right.
$$

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RRR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}
$$

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}}= & \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR} A_{12}}\right)+\int_{1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV} A_{1}}+\left(\int_{1} d \sigma_{m+2}^{\mathrm{RR}} \mathrm{~A}^{2}\right.\right. \\
& \text { RR, } A_{2} \text { regularizes doubly-unresolved limits }
\end{aligned}
$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Explicit and general: structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+}^{\mathrm{RR},}\right.\right. \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RRR}, \mathrm{~A}_{1}}\right.\right.\right. \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m}\right.\right.\right.
\end{aligned}
$$

$R R, A_{1}$ regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Explicit and general: structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)\right]\right\}
\end{gathered}
$$

RR, A_{12} removes overlapping subtractions
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Explicit and general: structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{gathered}
$$

RV, A1 regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

CoLoRFulNNLO uses known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

CoLoRFulNNLO uses known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007

CoLoRFulNNLO uses known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007
- Extension over whole phase space using momentum mappings (not unique): $\quad\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}$

Fully local:

kinematic sinqularities cancel in RR

$R=$ subtraction/RR

Fully local:

kinematic singularities cancel in RV

$R=$ subtraction $/\left(R V+\int_{1} R R, A_{1}\right)$

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary number of m jets
- for $m=2$,
- the insertion operators are independent of the kinematics (momenta are back-to-back, so MI's are needed at the endpoints only)
- color algebra is trivial: $\boldsymbol{T}_{1} \boldsymbol{T}_{2}=-\boldsymbol{T}_{1}^{2}=-\boldsymbol{T}_{2}^{2}=-C_{\mathrm{F}}$
- so can demonstrate the cancellation of poles

Poles cancel: $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ at $\mu=\mathrm{m}_{\mathrm{H}}$

$$
\begin{aligned}
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
& \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{VV}}=\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{+\frac{2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}+\left(\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}+6 C_{\mathrm{F}}^{2}-\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
&+ {\left[\left(\frac{8}{9}+\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{17}{2}-2 \pi^{2}\right) C_{\mathrm{F}}^{2}-\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} } \\
&+ {\left.\left[\left(-\frac{961}{216}+\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{109}{8}-2 \pi^{2}-14 \zeta_{3}\right) C_{\mathrm{F}}^{2}+\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\} } \\
& \sum \int \mathrm{d} \sigma^{\mathrm{A}}=\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{-\frac{2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}-\left(\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}+6 C_{\mathrm{F}}^{2}+\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
&- {\left[\left(\frac{8}{9}+\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{17}{2}-2 \pi^{2}\right) C_{\mathrm{F}}^{2}-\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} } \\
&- {\left.\left[\left(-\frac{961}{216}+\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{109}{8}-2 \pi^{2}-14 \zeta_{3}\right) C_{\mathrm{F}}^{2}+\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\} }
\end{aligned}
$$

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$\mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{P o l e s} \sum \int \mathrm{d} \sigma^{\mathrm{A}}=200 \mathrm{k}$ Mathematica lines = zero numerically in any phase space point:

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, A_{1}} \mathrm{~A}^{\mathrm{A}_{1}}\right]\right\} J_{m}\right. \\
\mathrm{d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$\mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{P o l e s} \sum \int \mathrm{d} \sigma^{\mathrm{A}}=200 \mathrm{k}$ Mathematica lines = zero analytically according to C. Duhr

$$
\begin{gathered}
\text { Message: } \\
\sigma_{3}^{\mathrm{NNLO}}=\int_{3}\left\{\mathrm{~d} \sigma_{3}^{\mathrm{VV}}+\sum \int \mathrm{d} \sigma^{\mathrm{A}}\right\}_{\epsilon=0} J_{3}
\end{gathered}
$$

indeed finite in $d=4$ dimensions

Application

Example: $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$

$$
\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{NNLO}}\left(\mu=m_{H}\right)=\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{LO}}\left(\mu=m_{H}\right)\left[1-\left(\frac{\alpha_{s}}{\pi}\right) 5.666667-\left(\frac{\alpha_{s}}{\pi}\right)^{2} 29.149+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

Scale dependence of the inclusive decay rate $\Gamma(H->b \bar{b})$

Can constrain subtractions

We can constrain subtractions near singular regions ($\alpha_{0}<1$) Poles cancel numerically ($\alpha_{0}=0.1$)

$$
\begin{aligned}
\mathrm{d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{VV}}+\sum \int \mathrm{d} \sigma^{\mathrm{A}} & =\frac{5.4 \times 10^{-8}}{\epsilon^{4}}+\frac{3.9 \times 10^{-5}}{\epsilon^{3}}+\frac{3.3 \times 10^{-3}}{\epsilon^{2}}+\frac{6.7 \times 10^{-3}}{\epsilon}+\mathcal{O}(1) \\
\operatorname{Err}\left(\sum \int \mathrm{d} \sigma^{\mathrm{A}}\right) & =\frac{3.1 \times 10^{-5}}{\epsilon^{4}}+\frac{5.0 \times 10^{-4}}{\epsilon^{3}}+\frac{8.1 \times 10^{-3}}{\epsilon^{2}}+\frac{7.7 \times 10^{-2}}{\epsilon}+\mathcal{O}(1)
\end{aligned}
$$

Predictions remain the same:
rapidity distribution of the leading jet in the rest frame of the Higgs boson. jets are clustered using the Durham algorithm (flavour blind) with $y_{\text {cut }}=0.05$

Subtractions may help efficiency

We can constrain subtractions near singular regions ($\alpha_{0}<1$), leading to fewer calls of subtractions:

α_{0}	1	0.1
timing (rel.)	1	0.40
$\left\langle N_{\text {sub }}\right\rangle$	52	14.5

$\left\langle\mathrm{N}_{\text {sub }}\right\rangle$ is the average number of subtraction calls

IR safe predictions w flavour- k_{\perp}

At NNLO accuracy the Durham algorithm is not infrared safe if the jet is tagged because soft gluon splitting can spoil the flavor
 of jets

IR safe predictions w flavour- k_{\perp}

At NNLO accuracy the Durham algorithm is not infrared safe if the jet is tagged because soft gluon splitting can spoil the flavor
 of jets

IR safe predictions w flavour- k_{\perp}

At NNLO accuracy the Durham algorithm is not infrared safe if the jet is tagged because soft gluon splitting can spoil the flavor
 of jets

Possible solutions

- treat the b-quarks massive only in the parts of the Feynman graphs that contain the gluon splitting into a bquark pair, while keeping $m_{b}=0$ in the Hbb vertex
- Use flavour- k_{\perp} algorithm
A. Banfi et al hep-ph/0601139

IR safe predictions w flavour- k_{\perp}

Flavour k_{\perp} clustering at $y_{\text {cut }}=0.05$

rapidity distribution
of the leading b-jet in the rest frame of the Higgs boson. jets are clustered using the flavour $-\mathrm{k}_{\perp}$ algorithm with $\mathrm{y}_{\text {cut }}=0.05$

Conclusions

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)
\checkmark Demonstrated the cancellation of ϵ-poles
\checkmark analytically (numerically for constrained subtractions)
\checkmark First application: Higgs-boson decay into a b-quark pair (combining with production at NNLO in progress)

