# Precise predictions for $t\bar{t}+E_{\rm T}^{miss}$ at the LHC

### **Giuseppe Bevilacqua**

MTA-DE Particle Physics Research Group, Debrecen

### Matter To The Deepest 2019

Katowice September 3, 2019

with H. B. Hartanto, M. Kraus, T. Weber and M. Worek

arXiv:1907.09359 [hep-ph]

### Introduction

This talk will focus on recent progress in the theoretical understanding of the SM process  $pp \rightarrow t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$  ...



... having in mind a wider perspective: DM searches in  $t\bar{t} + E_T^{miss}$  at colliders



**Dark Matter** studies lie at the interface of astrophysics, cosmology and collider physics



**Dark Matter** studies lie at the interface of astrophysics, cosmology and collider physics



It is useful to study DM using simplified models

- assume *mediator* (φ) which couples to both SM and DM particles
   → CP nature of mediator is unknown: scalar, pseudo-scalar, ...?
- couplings of  $\phi$  to SM particles constrained by precision measurements
  - $\hookrightarrow$  *Minimal Flavor Violation* (MFV) hypothesis is often quoted: couplings of  $\phi$  to the visible sector (SM) proportional to fermion masses

D'ambrosio, Giudice, Isidori and Strumia, hep-ph/0207036

 $\hookrightarrow$  in models with MFV, DM couples preferentially to top quarks



Arina *et al.*, arXiv:1605.09242 [hep-ph] Haisch, Pani and Polesello, arXiv:1611.09841 [hep-ph]

Recent examples of exclusion limits for SUSY or DM involving  $t\bar{t} + E_T^{miss}$  interpreted in the context of simplified models



Also, various theoretical models predict viable DM candidates (WIMP's )

e.g. SUSY:



All these BSM processes have the typical signature of recoiling visible final states against large missing transverse energy  $(E_T^{miss})$ 

Various SM backgrounds can also resemble this signature:

- top backgrounds:  $t\bar{t}$ ,  $t\bar{t}W$ , tW
- reducible backgrounds: WW, WZ, ZZ, Z + jets
- irreducible background:  $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$

### Determining the CP nature of spin-0 mediators in $t\bar{t}$ + DM production

Haisch, Pani and Polesello, arXiv:1611.09841 [hep-ph]



- Distribution of events in the  $(E_T^{miss}, m_{T2})$  plane for the different backgrounds and for one example of signal

 $[M_{\phi}=100~{\rm GeV}$  ,  $M_{\chi}=1~{\rm GeV}\,]$ 

- The area in the upper right corner above the black line is the region selected in the analysis

$$\begin{split} m_{\mathrm{T2}}^{2}(\vec{p}_{\mathrm{T}}^{\ell_{\mathrm{f}}}, \vec{p}_{\mathrm{T}}^{\ell_{\mathrm{f}}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) \equiv \\ \min_{\vec{q}_{\mathrm{T}}^{1} + \vec{q}_{\mathrm{T}}^{2} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max \left[ m_{\mathrm{T}}^{2}(\vec{p}_{\mathrm{T}}^{\ell_{\mathrm{f}}}, \vec{q}_{\mathrm{T}}^{-1}), m_{\mathrm{T}}^{2}(\vec{p}_{\mathrm{T}}^{\ell_{\mathrm{f}}}, \vec{q}_{\mathrm{T}}^{2}) \right] \right\} \end{split}$$

#### G. Bevilacqua

To further reduce the top background, the following observable is considered:

$$C_{em} = m_{T2} + 0.2 \cdot (200 \text{ GeV} - E_T^{miss})$$



- With  $300~{\rm fb}^{-1}$ , assuming 20% systematics for SM backgrounds, it should be possible to resolve between the two CP hypotheses up to  $M_{\phi}\approx 200~{\rm GeV}$ 

- Discovery reach depends on syst. uncertainty of SM backgrounds, dominated by  $t\bar{t}Z$
- $\leftrightarrow$  a good understanding of  $t\bar{t}Z$  is key to a possible discovery of DM in  $t\bar{t} + E_T^{miss}$
- G. Bevilacqua

# SM $t\bar{t}Z$ : state of the art

- NLO QCD → stable tops Lazopoulos et al., '08
- NLO QCD → NWA with NLO decays Röntsch and Schulze '14
- NLOPS QCD

Kardos, Garzelli and Trocsanyi '12

- NLOPS EW+QCD Frixione et al. '15
- NLO + NNLL

Kulesza et al. '18; Broggio et al. '17,'19

NLO QCD → off-shell, dilepton
 G.B., Hartanto, Kraus, Weber and Worek '19



- In 1611.09841,  $t\bar{t}Z$  events are generated with Madgraph5\_aMC@NLO at LO and normalized with the NLO cross section ( $\rightarrow$  *on-shell* top decays)
- Shape information is crucial to improve the reach for  $t\bar{t} + E_T^{miss}$  searches
- $\hookrightarrow$  we have performed a complete *off-shell* NLO calculation with <code>HELAC-NLO</code>

# The HELAC-NLO framework



#### G. Bevilacqua

### Setup and scales

Dilepton channel: p

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \nu_\tau \bar{\nu}_\tau + X$$
 @ 13 TeV

Cuts:

| $p_{T,b} > 40 \text{ GeV}$    | $ y_b  < 2.5$    | $\Delta R_{b\bar{b}} > 0.4$ | $p_T^{miss} > 50 \text{ GeV}$ |
|-------------------------------|------------------|-----------------------------|-------------------------------|
| $p_{T,\ell} > 30 \text{ GeV}$ | $ y_\ell  < 2.5$ | $\Delta R_{\ell\ell} > 0.4$ | $\Delta R_{\ell b} > 0.4$     |

Scales:

$$\mu_{0} = m_{t} + \frac{m_{Z}}{2}$$

$$\mu_{0} = \frac{H_{T}}{3}$$

$$\mu_{0} = \frac{E_{T}}{3} = \frac{1}{3} (m_{T,t} + m_{T,\bar{t}} + p_{T,Z})$$

$$\mu_{0} = \frac{E_{T}'}{3} = \frac{1}{3} (m_{T,t} + m_{T,\bar{t}} + m_{T,Z})$$

$$\mu_{0} = \frac{E_{T}''}{3} = \frac{1}{3} (m_{T,t} + m_{T,\bar{t}})$$

→ Fixed and dynamical scales, either "resonant aware"  $(E_T, E'_T, E''_T)$  or "blind"  $(H_T)$ 

$$\begin{split} H_T &= p_{T,e^+} + p_{T,\mu^-} + p_T^{miss} + p_{T,b_1} + p_{T,b_2} \\ & m_{T,i} = \sqrt{p_{T,i}^2 + m_i^2} \end{split}$$

#### G. Bevilacqua

### Total cross sections

### $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \nu_\tau \bar{\nu}_\tau$ – NLO cross section for various scale and PDF choices

| $\sigma^{ m NLO}$ [fb]                  | CT14                       | MMHT2014                   | NNPDF3.0                   | $\delta_{PDF}$ |
|-----------------------------------------|----------------------------|----------------------------|----------------------------|----------------|
| $\mu_0 = \mathbf{m_t} + \mathbf{m_Z}/2$ | $0.1266^{+1,1\%}_{-5.9\%}$ | $0.1275^{+1.1\%}_{-5.9\%}$ | $0.1309^{+1.1\%}_{-6.0\%}$ | 3.4%           |
| $\mu_0 = \mathbf{H_T}/3$                | $0.1270^{+0.7\%}_{-6.8\%}$ | $0.1278^{+0.7\%}_{-7.0\%}$ | $0.1312^{+0.7\%}_{-6.9\%}$ | 3.3%           |
| $\mu_0 = \mathbf{E_T}/3$                | $0.1272^{+1.6\%}_{-6.8\%}$ | $0.1279^{+1.6\%}_{-6.8\%}$ | $0.1313^{+1.6\%}_{-6.9\%}$ | 3.2%           |
| $\mu_0 = \mathbf{E}'_{\mathbf{T}}/3$    | $0.1268^{+1.5\%}_{-6.4\%}$ | $0.1280^{+1.5\%}_{-6.4\%}$ | $0.1315^{+1.5\%}_{-6.5\%}$ | 3.7%           |
| $\mu_0 = \mathbf{E}''_{\mathbf{T}} / 3$ | $0.1286^{+1.0\%}_{-4.7\%}$ | $0.1295^{+1.0\%}_{-4.7\%}$ | $0.1330^{+1.0\%}_{-4.8\%}$ | 3.4%           |

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]



- Complete cross section for dilepton channel  $(e/\mu)$  can be realized by multiplying results by 12:

 $\sigma_{NLO}(t\bar{t}Z, \text{dilept.}) \sim 1.5 \text{ fb}$ 

- Scale uncertainties  $\sim \mathcal{O}(5-7\%)$
- PDF uncertainties  $\sim \mathcal{O}(3\%)$

G. Bevilacqua

### Differential cross sections

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]



### Differential cross sections

Let's also check some dimensionful observable...



G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]

 $\begin{array}{l} -\mu = \mathbf{m_t} + \mathbf{m_Z}/2 \qquad \rightarrow \mbox{ NLO gets outside LO uncertainties} \\ -\mu = \mathbf{H_T}/3, \mathbf{E_T}/3, \dots \ \rightarrow \ \mbox{improved perturbative convergence!} \end{array}$ 

#### G. Bevilacqua

# Differential cross sections

### An interesting case: $p_T^{miss}$



- Fixed scale behaves much better for  $p_T^{miss}\colon$  reduced shape distortions.
- It is not a threshold effect: the region  $m_{t\bar{t}}\approx 2m_t$  is not ehanced in any special way
- Rather due to different kinematics of  $\nu$ 's originated from top or Z decays:

 $p_{T,Z} \equiv p_T(\nu_\tau + \bar{\nu}_\tau) \qquad p_T^{\prime miss} \equiv p_T(\nu_e + \bar{\nu}_\mu)$ 

 $\langle p_T^{\prime miss}\rangle < \langle p_T^{miss}\rangle < \langle p_{T,Z}\rangle$ 

 $\hookrightarrow \mbox{ Dynamical scales (typically hard) work} fine for $p_{T,Z}$ but not for $p_T'^{miss}$, which dominates the convolution}$ 

## Summary

- We have achieved the first NLO predictions for off-shell  $t\bar{t}Z$  production (dilepton channel) with HELAC-NLO
- Good theoretical control over  $t\bar{t}Z$  is key for DM searches in  $t\bar{t} + E_T^{miss}$ : shapes, not only normalization!
- NLO is mandatory for good modeling of  $t\bar{t}Z$  observables: differential *K*-factors are far from being constant
- Adopting judicious scales can improve perturbative stability and modeling of individual observables

### Outlook

- How good is modeling of top decays in Madgraph5\_aMC@NLO?
- How important are the off-shell effects within the analysis considered?
- How much can one improve DM searches with more accurate modeling of SM backgrounds?

We are happy to share our  $t\bar{t}Z$  Ntuples. If interested for your analysis, contact us!

# Backup slides



Comparing  $t\bar{t}$  and  $t\bar{t}Z(Z \rightarrow \nu\bar{\nu})$  kinematics: distributions normalized to one

G.B, Hartanto, Kraus, Weber and Worek, arXiv:1907.09359 [hep-ph]