Variational approach to neutrino mass matrices

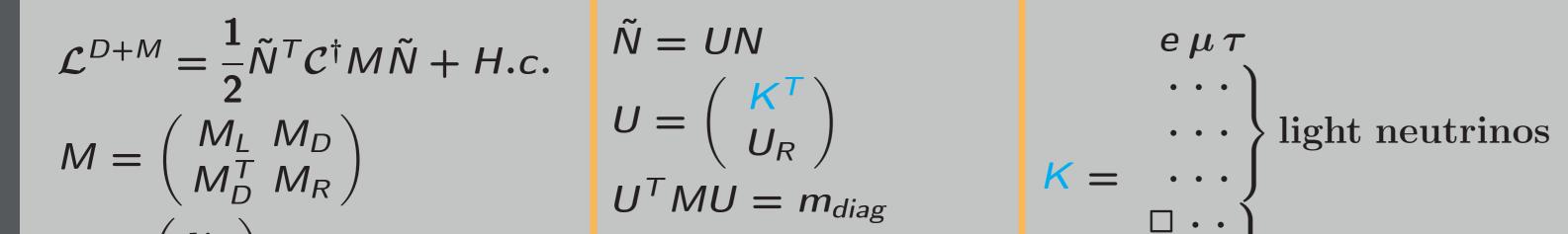
Wojciech Flieger, Janusz Gluza

Institute of Physics, University of Silesia

Aim of variational approach to neutrino mass matrices:

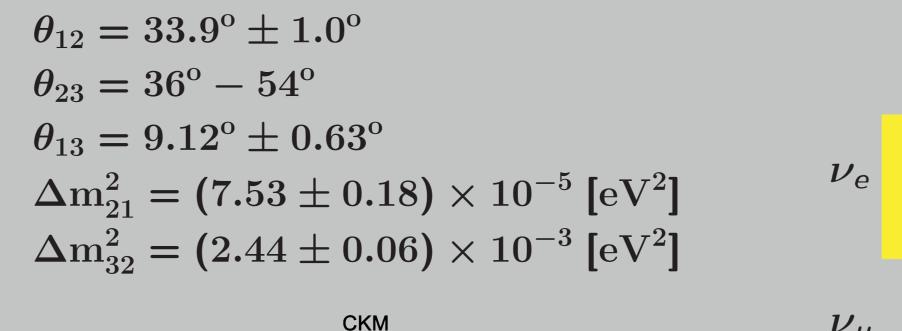
- Investigation of relations between neutrino mass matrix textures, scales and neutrino masses.
- Deeper understanding of a relation between the PMNS mixing matrix and heavy neutrino mass matrix textures.
- Establishing new restrictions on light-heavy neutrino mixings.

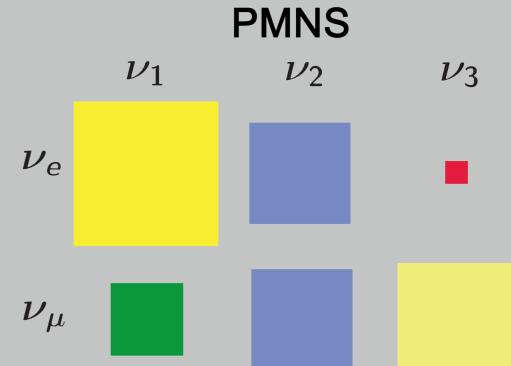
Neutrino mass matrices, diagonalization, mixing

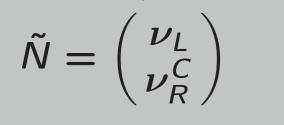


Current status of masses and mixings [4]

$$U_{PMNS} = \begin{bmatrix} (0.810, 0.829) & (0.539, 0.562) & (0.147, 0.169) \\ (-0.485, -0.479) & (0.467, 0.563) & (0.669, 0.743) \\ (0.278, 0.339) & (-0.683, -0.626) & (0.647, 0.728) \end{bmatrix}$$





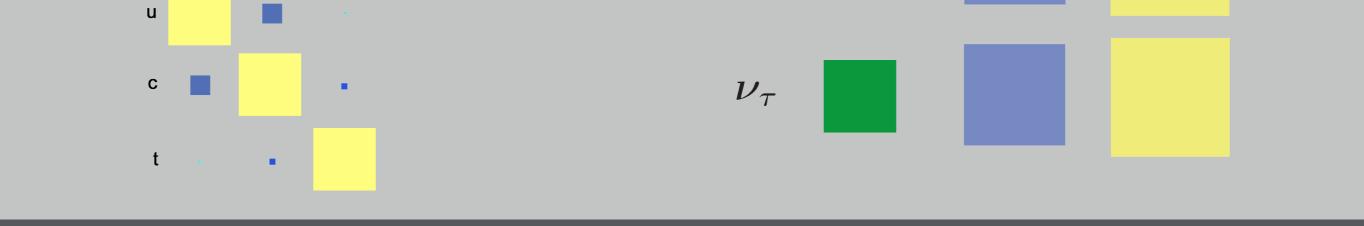


$$m_{heavy} \simeq M_R$$

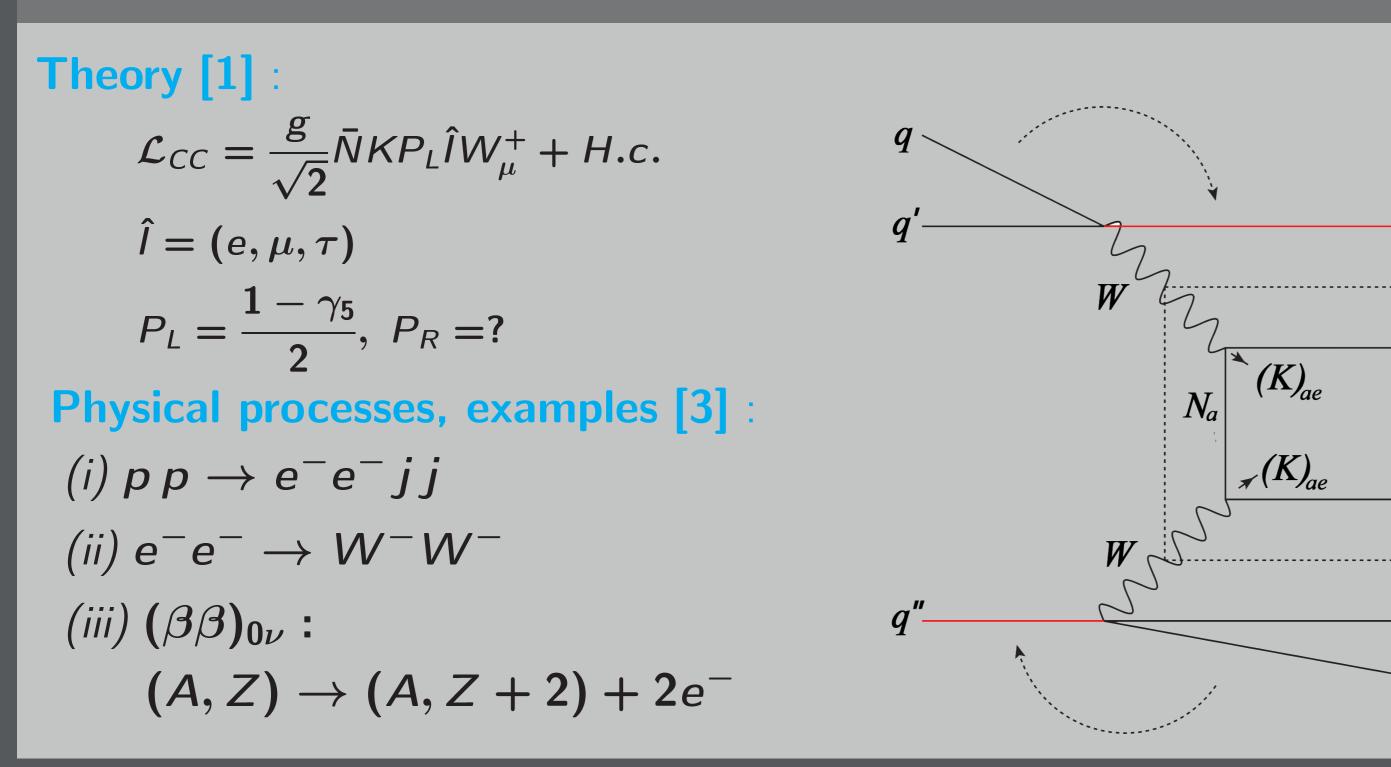
 $m_{light} \simeq -M_D^T M_R^{-1} M_D$

$$\left.\begin{array}{c} \Box \\ \bullet \end{array}\right\} heavy neutrinos \\ \Box \\ \bullet \end{array}\right\}$$

q



(A) Heavy neutrinos and physical consequences



(D) Maximally simplified pattern

$$M_D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.8 & 0.9 & 1 \end{pmatrix} [\text{GeV}], \quad M_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 150 & 0 \\ 0 & 0 & 200 \end{pmatrix} [\text{GeV}]$$

Direct calculation:

 $\lambda(M) = \{0, 0, 0.793, 0.807, 150, 200\}[GeV] \leftarrow Typical problem! [1]$

Variational approach:

We use (2B) and (3B) to estimate neutrino masses:

 $\lambda(\hat{M}_D) = \{-1.565, 0, 0, 0, 0, 1.565\}$ [GeV] $\lambda(\hat{M}_{R}) = \{0, 0, 0, 0, 150, 200\}$ [GeV]

From (2B) we have a quick estimation

 $\lambda(M) = \{0 \pm 1.565, 0 \pm 1.565, 0$ $0 \pm 1.565, 150 \pm 1.565, 200 \pm 1.565$ [GeV]

Not a quite impressive result, can we get more from that?

1) Let A be an $n \times n$ Hermitan matrix with eigenvalues

 $\alpha_1 < \alpha_2 < \ldots < \alpha_n$

Then for each $1 \leq k \leq n$

 $\alpha_{k} = \max_{\substack{S \subset C^{n} \\ dim S = k}} \min_{\substack{x \in S \\ \|x\| = 1}} x^{\dagger} A x = \min_{\substack{T \subset C^{n} \\ dim T = n - k + 1}} \max_{\substack{x \in T \\ \|x\| = 1}} x^{\dagger} A x$

2) Let A and B be $n \times n$ Hermitian matrices and Y = A + B. Let

 $\alpha_1 < \alpha_2 < \ldots < \alpha_n, \quad \beta_1 < \beta_2 < \ldots < \beta_n, \quad \gamma_1 < \gamma_2 < \ldots < \gamma_n$ be the eigenvalues of A, B and C, respectively. Then for $1 \le i + j - 1 \le n$

 $\alpha_i + \beta_i \leq \gamma_{i+i-1}$ and $\gamma_{n-i-i} \leq \alpha_{n-i+1} + \beta_{n-i+1}$

3) Let A be an $n \times n$ Hermitian matrix partitioned as

$$A = \begin{pmatrix} B & X \\ X^T & D \end{pmatrix}$$

where matrix B is of order $m \times m$, m < n. Let

 $\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n, \quad \beta_1 \leq \beta_2 \leq \ldots \leq \beta_m$ be the eigenvalues of A and B, respectively. Then for $1 \le i \le m$

$$\alpha_i \leq \beta_i \leq \alpha_{n-m+i}$$

(C) Matrix Decomposition

(E) Variational method and neutrinos: first conclusive outcomes

- \blacktriangleright In [2] a formal proof is given that for $M_R \gg M_D$ we can not get a fourth light sterile neutrino.
 - In the CP invariance seesaw scenario with two mass scales $M_R \gg M_D$, $M_D \in M_{3 \times n}, M_R \in M_{n \times n}$ and $\lambda(M_R) \gg |m_D|$ exactly 3 light neutrinos are present.

Proof scheme: From Weyl's inequalities (2B) $|\lambda_i(M) - \lambda_i(\hat{M}_R)| \leq \rho(\hat{M}_D) \leq ||\hat{M}_D||_F = \sum m_{ij}^2 \ , \ \rho(\hat{M}_D) = \max\{|\lambda(\hat{M}_D)|\}$ But $\sum m_{ij}^2 \sim |m_D| \Rightarrow
ho(\hat{M}_D) \leq |m_D| \ , \ m_D \in M_D$ On the other hand matrix \hat{M}_R has at least 3 eigenvalues equal 0. $|\lambda_i(M) - \mathbf{0}| \leq \rho(\hat{M}_D)$ for $\lambda_i(\hat{M}_R) = \mathbf{0}$ Thus Hence, three eigenvalues of M must be smaller than $|m_D|$. **Conclusion** (1): At least 3 light neutrinos exist.

Similar steps with assumption that $\lambda(M_R) \gg |m_D|$ gives **Conclusion** (II): Remaining masses must be heavy.

$$M = \begin{pmatrix} \mathbf{0} & M_D \\ M_D^T & \mathbf{M}_R \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & M_R \end{pmatrix} + \begin{pmatrix} \mathbf{0} & M_D \\ M_D^T & \mathbf{0} \end{pmatrix} \equiv \hat{M}_R + \hat{M}_D$$

Conclusions (I) and (II) implies Conclusion (III): Heavy masses $N_{1,...,n}$ are maximally shifted by $|m_D|$ from eigenvalues of M_R .

References

[1] Janusz Gluza. On teraelectronvolt Majorana neutrinos. Acta Phys. Polon., B33: 1735-1746, 2002. [2] M. Czakon, J. Gluza, M. Zralek. Seesaw mechanism and four light neutrino states. Phys. Rev., D64: 117304, 2001. [3] Janusz Gluza, Tomasz Jelinski, Robert Szafron. Lepton Number Violation and 'Diracness' of massive neutrinos composed of Majorana states. arXIV:1604.01388, 2016. [4] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update (http://pdg.lbl.gov/2015/tables/rpp2015-sum-leptons.pdf) [5] Rejandra Bhatia. *Matrix Analysis*. Springer, 1996.

Acknowledgments

Work is supported by the Polish National Science Centre (NCN) under the Grant Agreement No. DEC-2013/11/B/ST2/04023