Krzysztof A. Meissner Uniwersytet Warszawski

Katowice, 14.05.2016

K.A. Meissner, Conformal Standard Model - p. 1/12

• Hierarchy problem – quantum corrections $m^2 \sim \Lambda^2 \Rightarrow$ why $m \ll M_P$? (with UV cutoff Λ = scale of 'new physics')

- Hierarchy problem quantum corrections $m^2 \sim \Lambda^2 \Rightarrow$ why $m \ll M_P$? (with UV cutoff Λ = scale of 'new physics')
- CP breaking by CKM matrix too small to explain baryogenesis

- Hierarchy problem quantum corrections $m^2 \sim \Lambda^2 \Rightarrow$ why $m \ll M_P$? (with UV cutoff Λ = scale of 'new physics')
- CP breaking by CKM matrix too small to explain baryogenesis
- no candidate for CDM

- Hierarchy problem quantum corrections $m^2 \sim \Lambda^2 \Rightarrow$ why $m \ll M_P$? (with UV cutoff Λ = scale of 'new physics')
- CP breaking by CKM matrix too small to explain baryogenesis
- no candidate for CDM
- Most popular proposal: SM \longrightarrow (p,C,N...)MSSM

- Hierarchy problem quantum corrections $m^2 \sim \Lambda^2 \Rightarrow$ why $m \ll M_P$? (with UV cutoff Λ = scale of 'new physics')
- CP breaking by CKM matrix too small to explain baryogenesis
- no candidate for CDM
- Most popular proposal: $SM \longrightarrow (p,C,N...)MSSM$
- 10 years ago the Conformal Standard Model (CSM) was proposed

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

K.A. Meissner, Conformal Standard Model - p. 3/12

- assumptions:
- Conformal symmetry 'softly broken'

- assumptions:
- Conformal symmetry 'softly broken'
- see-saw mechanism for neutrinos

- assumptions:
- Conformal symmetry 'softly broken'
- see-saw mechanism for neutrinos
- B L unbroken

- assumptions:
- Conformal symmetry 'softly broken'
- see-saw mechanism for neutrinos
- B L unbroken
- the model viable to M_{Pl}

- assumptions:
- Conformal symmetry 'softly broken'
- see-saw mechanism for neutrinos
- B L unbroken
- the model viable to M_{Pl}
- no low energy supersymmetry

 SM unchanged in the usual sectors, only a couple of new parameters

then

- SM unchanged in the usual sectors, only a couple of new parameters
- vacuum stable up to M_{Pl} (in the SM unstable above 10^{10} GeV)

- SM unchanged in the usual sectors, only a couple of new parameters
- vacuum stable up to M_{Pl} (in the SM unstable above 10^{10} GeV)
- all masses logarithmically running

then

- SM unchanged in the usual sectors, only a couple of new parameters
- vacuum stable up to M_{Pl} (in the SM unstable above 10^{10} GeV)
- all masses logarithmically running
- a set of additional complex scalars:
 - one scalar mixing with the usual Higgs
 - several sterile scalars

then

 phases of scalar fields very light and extremely weakly coupled candidates for DM

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

 $\bullet \mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}'$:

$$\mathcal{L}' := \left(\bar{L}^{i} \Phi Y_{ij}^{E} E^{j} + \bar{Q}^{i} \epsilon \Phi^{*} Y_{ij}^{D} D^{j} + \bar{Q}^{i} \epsilon \Phi^{*} Y_{ij}^{U} U^{j} + \frac{\bar{L}^{i} \epsilon \Phi^{*} Y_{ij}^{\nu} \nu_{R}^{j} + y_{M} \varphi_{ij} N^{iT} \mathcal{C} N^{j} + \text{h.c.} \right) \\ - m_{\Phi}^{2} (\Phi^{\dagger} \Phi) - m_{\phi}^{2} \text{Tr}(\varphi \varphi^{*}) \\ - \lambda_{1} (\Phi^{\dagger} \Phi)^{2} - 2\lambda_{3} \text{Tr}(\varphi \varphi^{*}) (\Phi^{\dagger} \Phi) - \lambda_{2} (\text{Tr}(\varphi \varphi^{*})) \\ - \lambda_{4} \text{Tr}(\varphi \varphi^{*} \varphi \varphi^{*})$$

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

•
$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}'$$

$$\mathcal{L}' := \left(\bar{L}^{i} \Phi Y_{ij}^{E} E^{j} + \bar{Q}^{i} \epsilon \Phi^{*} Y_{ij}^{D} D^{j} + \bar{Q}^{i} \epsilon \Phi^{*} Y_{ij}^{U} U^{j} + \frac{\bar{L}^{i} \epsilon \Phi^{*} Y_{ij}^{\nu} \nu_{R}^{j} + y_{M} \varphi_{ij} N^{iT} \mathcal{C} N^{j} + \text{h.c.} \right) \\ - m_{\Phi}^{2} (\Phi^{\dagger} \Phi) - m_{\phi}^{2} \text{Tr}(\varphi \varphi^{\star}) \\ - \lambda_{1} (\Phi^{\dagger} \Phi)^{2} - 2\lambda_{3} \text{Tr}(\varphi \varphi^{\star}) (\Phi^{\dagger} \Phi) - \lambda_{2} (\text{Tr}(\varphi \varphi^{\star})) \\ - \lambda_{4} \text{Tr}(\varphi \varphi^{\star} \varphi \varphi^{\star})$$

• $\phi = \phi_{ij}, Y^M \sim O(1), Y^{\nu}_{ij} \sim O(10^{-6})$ (see-saw) $m_{\Phi,\phi} \sim 100 - 1000 \text{ GeV}$

- Standard Model + very light neutrinos
 + heavy neutrinos (~ 1 TeV))
 - + complex new scalars

- Standard Model + very light neutrinos + heavy neutrinos (~ 1 TeV))
 + complex new scalars
- BEH mechanism for EW symm. $\langle \Phi \rangle \neq 0$ SSB of the lepton number symm. $\langle \varphi \rangle \neq 0$

- Standard Model + very light neutrinos + heavy neutrinos (~ 1 TeV))
 + complex new scalars
- BEH mechanism for EW symm. $\langle \Phi \rangle \neq 0$ SSB of the lepton number symm. $\langle \varphi \rangle \neq 0$
- phases of ϕ_{ij} (pseudo)GBs of global lepton number symmetry

 $L^i \to e^{i\alpha} L^i, \ E^i \to e^{i\alpha} E^i, \ \nu_R^i \to e^{i\alpha} \nu_R^i, \ \varphi_{ij} \to e^{-2i\alpha} \varphi_{ij}$

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• we treat the cutoff scale Λ ($\sim M_{Pl}$) as a bona fide physical scale and we define all 'bare' quantities at Λ

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

- we treat the cutoff scale Λ ($\sim M_{Pl}$) as a bona fide physical scale and we define all 'bare' quantities at Λ
- we have shown that if we impose vanishing of quadratic divergences at one scale Λ then all masses assumed small at Λ remain small in the whole interval (M_W, M_{Pl}) 'soft breaking' of conformal symmetry

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

- we treat the cutoff scale Λ ($\sim M_{Pl}$) as a bona fide physical scale and we define all 'bare' quantities at Λ
- we have shown that if we impose vanishing of quadratic divergences at one scale Λ then all masses assumed small at Λ remain small in the whole interval (M_W, M_{Pl}) 'soft breaking' of conformal symmetry
- in supersymmetry quadratic divergences vanish identically by construction for all scales

vanishing of quadratic divergences

$$f_{H} = \frac{9}{4}g_{w}^{2} + \frac{3}{4}g_{y}^{2} + 6\lambda_{1} + 12\lambda_{3} - 6y_{t}^{2} = 0 \text{ (at } \Lambda)$$

$$f_{\phi} = 14\lambda_{2} + 4\lambda_{3} + 8\lambda_{4} - |y_{M}|^{2} = 0 \text{ (at } \Lambda)$$

• no other new particles at LHC except standard Higgs 125 GeV (M_1) and the new scalar (M_2) – they are mixtures of the doublet and $\text{Tr}(\phi_{ij})$ with the mixing angle β

- no other new particles at LHC except standard Higgs 125 GeV (M_1) and the new scalar (M_2) – they are mixtures of the doublet and $\text{Tr}(\phi_{ij})$ with the mixing angle β
- new scalar can eventually be observed (if β is large enough) see below

- no other new particles at LHC except standard Higgs 125 GeV (M_1) and the new scalar (M_2) – they are mixtures of the doublet and $Tr(\phi_{ij})$ with the mixing angle β
- new scalar can eventually be observed (if β is large enough) see below
- baryogenesis through (resonant) leptogenesis $\eta\sim 10^{-10}$ very easy to obtain from new phases in Y_{ν}^{ij}

- no other new particles at LHC except standard Higgs 125 GeV (M_1) and the new scalar (M_2) – they are mixtures of the doublet and $Tr(\phi_{ij})$ with the mixing angle β
- new scalar can eventually be observed (if β is large enough) see below
- baryogenesis through (resonant) leptogenesis $\eta\sim 10^{-10}$ very easy to obtain from new phases in Y_{ν}^{ij}
- phases of new scalars very light, very weakly coupled, good candidates for CDM

Phenomenology – examples

$ y_M $	M_N	$M_{h'}$	t_eta	$\Gamma_{h'}$	$h' \to OP$	$h_0 \to OP$
0.56	545	378	424	-0.3	0.59	0.69
0.54	520	378	360	-0.3	0.59	0.68
0.75	1341	511	1550	0.25	0.73	0.91
0.75	2732	658	3170	-0.16	0.74	0.99
0.82	2500	834	2925	0.15	0.74	0.98

 assumption of 'softly broken' conformal symmetry replaces the usual assumption of low energy supersymmetry

- assumption of 'softly broken' conformal symmetry replaces the usual assumption of low energy supersymmetry
- the model has several more parameters than SM (MSSM 116) and uses quantum symmetry breaking (conformal anomaly)

- assumption of 'softly broken' conformal symmetry replaces the usual assumption of low energy supersymmetry
- the model has several more parameters than SM (MSSM 116) and uses quantum symmetry breaking (conformal anomaly)
- vacuum is stable up to M_{Pl}

- assumption of 'softly broken' conformal symmetry replaces the usual assumption of low energy supersymmetry
- the model has several more parameters than SM (MSSM 116) and uses quantum symmetry breaking (conformal anomaly)
- vacuum is stable up to M_{Pl}
- baryogenesis (through resonant leptogenesis) easily accommodates $\eta \sim 10^{-10}$

Summary

• CSM has definite (unique) predictions for LHC – besides the Higgs one new scalar with the Higgs BRs (plus invisible), other scalars and right-chiral neutrinos (masses \sim 1 TeV) too weakly coupled to be visible

Summary

- CSM has definite (unique) predictions for LHC – besides the Higgs one new scalar with the Higgs BRs (plus invisible), other scalars and right-chiral neutrinos (masses \sim 1 TeV) too weakly coupled to be visible
- extremely light and naturally weakly coupled phases – CDM candidates