Heavy neutrinos masses and mixings at the LHC

Tomasz Jeliński University of Silesia

in collaboration with:

J. Gluza, M. Kordiaczyńska (University of Silesia) R. Szafron (Alberta University)

Matter To The Deepest, Ustroń, 13-18 September 2015

RHC includes plenty of connected issues

LHC-1 excess data

A few deviations from the SM reported by the ATLAS and CMS in invariant mass distributions near 2 TeV:

(i) 3.4σ excess at ${\sim}2$ TeV in the ATLAS search interpreted as a W' boson decaying into $WZ \to jj$

(ii) 1.4σ excess at ~ 1.9 TeV in the CMS search for jj resonances without distinguishing between the W- and Z-tagged jets

(iii) 2.8 σ excess in the 1.8 – 2.2 TeV bin in the CMS search for a W' and a heavy "right-handed" neutrino, N_R , through the $W' \rightarrow N_R e \rightarrow eejj$ process

(iv) 2.2σ excess in the 1.8 - 1.9 TeV bin in the CMS search for $W' \to Wh^0$, where the SM Higgs boson, h^0 , is highly boosted and decays into $b\bar{b}$, while $W \to \ell\nu$

(v) 2σ excess at ~ 1.8 TeV in the CMS dijet resonance search The ATLAS search in the same channel has yielded only a 1σ excess at 1.8 TeV

Theory vs experiment

Three examples:

(i) "Symmetry Restored in Dibosons at the LHC?" [Brehmer et al., arXiv:1507.00013]

(ii) "Reconciling the 2 TeV Excesses at the LHC in a Linear Seesaw Left-Right Model" [Deppisch et al., arXiv:1508.05940]

(iii) "Unified explanation of the eejj, diboson and dijet resonances at the LHC" [Bhupal Dev and Mohapatra, arXiv:1508.02277]

In (ii) linear see-saw is favorable, in (iii) inverse see-saw is favorable over type I see-saw

(iv) "Heavy neutrinos and the $pp \rightarrow lljj$ CMS data," J. Gluza and T. Jeliński, PLB **748** (2015) 125 [arXiv:1504.05568 [hep-ph]]

Our work:

Detailed insight into heavy neutrino mass and mixing structures - meaning of interferences

Nature of neutrinos implies SS and OS content of the dilepton signal

CMS: degenerate neutrinos with trivial mixing matrices, $M_N = M_{W_2}/2$, $g_L = g_R$ ATLAS: even more restricted analysis, comment later on <u>Aim</u>: keep $g_L = g_R$ but go from A to B by exploring heavy neutrino sector

Right-handed currents

$$\mathcal{L} \supset \frac{g_L}{\sqrt{2}} \overline{N}_a \gamma^{\mu} P_R(K_R)_{aj} l_j W_{2\mu}^+ + \text{h.c.}$$

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}, \qquad U \approx \begin{pmatrix} 1 & 0 \\ 0 & K_R^{\dagger} \end{pmatrix}$$

- \clubsuit heavy gauge boson W_2^\pm , $M_{W_2}\sim 2~{\rm TeV}$
- \diamond heavy neutrinos N_a , $M_D \ll M_R$
- * K_R is heavy neutrino mixing matrix defined by $M_R = K_R^T \operatorname{diag}(M_{N_1}, M_{N_2}, M_{N_3}) K_R$

CMS data on $pp \rightarrow lljj$

1. Ratio of opposite-sign (OS) $pp \to e^{\pm}e^{\mp}jj$ to the same-sign (SS) $pp \to e^{\pm}e^{\pm}jj$ leptons:

$$r_{CMS} = \frac{N_{SS}}{N_{OS}} = \frac{1}{13},$$

- 2. No excess in the $\mu\mu$ channel
- 3. Overall excess in eejj production, interpreted by CMS with $g_L = g_R$

$$\gamma = rac{\sigma(pp o eejj)_{CMS}}{\sigma(pp o eejj)_0} pprox 0.54,$$

They can be explained by taking into account N_a mixings!

All the above facts can be reconciled with data if heavy neutrinos with CP phases and mixings are taken into account, e.g.

$$M_{N_{1,3}} = 0.925 \,\text{TeV}, \quad M_{N_2} = 10 \,\text{TeV}, \quad K_R = \left(\begin{array}{ccc} \cos \theta_{13} & 0 & \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\phi_3} \sin \theta_{13} & 0 & e^{i\phi_3} \cos \theta_{13} \end{array}\right)$$

and

$$\sin^2 2\theta_{13} \sin^2 \phi_3 = 1 - r_{CMS}.$$

$$N_1 = \cos \theta_{13} N_e + \sin \theta_{13} N_\tau$$
$$N_2 = N_\mu$$
$$N_3 = -e^{i\phi_3} \sin \theta_{13} N_e + e^{i\phi_3} \cos \theta_{13} N_\tau$$

There is no problem with $\mu \to e \gamma$ here.

Phase-Dirac heavy neutrino

pseudo-Dirac, quasi-Dirac, . . . , phase-Dirac:

$$\Delta M \ll \Gamma(N_{1,3})$$

$$N_1 = \cos \theta_{13} N_e + \sin \theta_{13} N_{\tau}$$

$$N_3 = -e^{i\phi_3} \sin \theta_{13} N_e + e^{i\phi_3} \cos \theta_{13} N_{\tau}$$

Remarks on LFV

 \clubsuit For Majorana neutrinos the same number of SS and OS events is expected, while CMS data indicates that $r\ll 1$

Dirac-type of neutrinos must be involved!

In fact, lepton number is violated in two cases:

(i) phase-Dirac type of neutrino, compounds of two Majorana degenerate heavy mass states with not maximal mixing and non-trivial CP phase

(ii) non-degenerate heavy Majorana mass states

ATLAS analysis of $pp \rightarrow eejj$

They derive bounds on M_{N_a} looking only for SS events \rightarrow possibility that neutrinos are of phase-Dirac is missed!

Remark on exclusion plots

Neglecting heavy neutrino mixings and CP phases seems to lead to oversimplified exclusion plots.

Summary

- details of heavy neutrinos sector are really important for interpreting experimental data
- \clubsuit same-sign events of $pp \to eejj$ are present when heavy neutrinos are of phase-Dirac type