Recent results on neutrino cross sections

(in the intermediate energy range)

Tomasz Wąchała The H. Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakow

Matter to the Deepest, Ustroń, 17.09.2015

Outline

- 1. Introduction.
- 2. Overview of the most important neutrino scattering experiments.
- 3. Charged current quasi-elastic measurements.
- 4. Charged current single pion production results.
- 5. Other results.
- 6. Summary

- Neutrino cross sections are well known at the energies:
 - → ~10 MeV (Inverse Beta Decay) solar neutrinos, reactor neutrinos
 - → ~100 GeV (Deep Inelastic Scattering)
- ...but not so well known in the intermediate energy range (<u>10's MeV ~ 10's GeV</u>)
- Situtation is even worse for anti-neutrino interactions.

T.Wąchała, Recent results on neutrino cross sections

- Why neutrino cross sections in the intermediate energy range are important for us?
 - This is where we do our (long-baseline) neutrino oscillation experiments (CP violation, neutrino mass hierarchy)
 - Requirements for the precise measurements at the future long-baseline neutrino oscillation experiments:
 - ~ ~1% uncertainty on signal normalization (to compare: ~7% T2K today)

CP Violation Sensitivity

- ... even more complications: we use nuclear targets to increase the number of detected neutrino interactions.
- One has to take into account nuclear effects: Fermi motion, Pauli blocking, binding energy, modified nucleon form factors, final state interactions,...

- Some examples of nuclear models used in our neutrino event generators:
 - Relativistic Fermi Gas (RFG) nucleons as independent particles in a potential generated by the rest of the nucleus

R. Smith and E. Moniz, Nucl. Phys. B43, 605 (1972); A. Bodek, S. Avvakumov, R. Bradford, and H. S. Budd, J.Phys.Conf.Ser. 110, 082004 (2008); K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, Eur.Phys.J. C54, 517 (2008)

• Local Fermi Gas (LFG) - nucleon Fermi momentum and binding energy are a function of the position in the nucleus

AK. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, Eur. Phys. J. C54, 517 (2008)

• Spectral Function (SF) - correlations between removal energies and initial state momenta of the nucleons, gaussian (not delta-function like in RFG) spectrum of each shell

O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys. A579, 493 (1994)

talk later • Nucleon-nucleon (NN) correlations, many-body currents: SRC (Short-range correlations) - A. today Bodek, and J. L. Ritchie, Phys. Rev. D23, 1070 (1980), Phys. Rev. D24, 1400 (1981), Transverse Enhancement Model (TEM) - A. Bodek, H. Budd, and M.Christy, Eur.Phys.J. C71, 1726 (2011), Meson Exchange Currents (MEC, 2p2h) - J. Nieves, I. Ruiz Simo and M. J. Vicente Vacas, Phys. Rev. C 83 (2011) 045501, Random Phase Approximation (RPA), ...

Ustroń, 17.09.2015

T.Wachała, Recent results on neutrino cross sections

More details

in J. Żmuda

MINERvA experiment

- Accelerator-made neutrino beam (NuMI) with two energy settings: Low Energy (LE), Medium Energy (ME)
- Detector:
 - Fine-grained scintillator (CH) tracker surrounded by electromagnetic and hadronic calorimeter + MINOS near detector as muon spectrometer
 - → 120 modules stacked along the beam line in three orientations
- Additional nuclear targets upstream of the main detector

Ustroń, 17.09.2015

T.Wąchała, Recent results on neurino cross sections

Ustroń, 17.09.2015

T2K experiment

 T2K beam: Accelerator-made neutrino beam from J-PARC center in Japan with neutrino energy <E, >~0.6GeV

• ND280 off-axis near detector:

- → Several sub-detectors in 0.2 T magnetic field:
 - Tracker (TPCs & Fine Grained Detectors), Pizero Detector (P0D), Electromagnetic Calorimeter (ECAL), Side Muon Range Detector (SMRD)
- → FGD targets: hydrocarbon (CH) + water (H₂O)
- TPC: good particle tracking efficiency, resolution and particle identification via dE/dx
- INGRID on-axis near detector:
 - 16 modules: iron/scintillator sandwich + additional scintillator-only module (proton module)
 - Not magnetized, less precise but larger mass than offaxis: iron (Fe) + hydrocarbon (CH)

MiniBooNE & ArgoNeuT

- Using accelerator-made neutrino beam from FermiLab's Booster accelerator: $E_v = 0.5 1$ GeV
- Detector located 541m downstream of neutrino target
 - → Filled with 800 tons of pure mineral oil (CH₂),
 450t fiducial volume
 - → 12m diameter sphere (10m fiducial volume)
 - → 1280 inner phototubes
 - → 240 veto phototubes
 - → 3m overburden

Ustroń, 17.09.2015

T.Wąchała, Recent results on ne sections

 Small-scale liquid argon time projection chamber (LArTPC) to the NuMI neutrino beam.

- Upstream of the MINOS near detector (used as a muon spectrometer). First LAr TPC in a **medium (1-10 GeV) energy** neutrino beam.
- TPC: 47 x 40 x 90 cm³, 240 kg active mass
- Data-taking concluded in March 2010 (from 09/2009), and analysis is ongoing.

9

Charged current quasi-elastic scattering

- Charged current quasi-elastic scattering (CCQE) is dominant contribution at the sub-GeV energies. Gives the largest contribution to the signal samples in oscillation experiments.
- Quasi-elastic (QE) approximation (target nucleon at rest) is used in the oscillation experiments (eg. T2K) to reconstruct neutrino energy (E_v) from muon kinematics → wrong modelling can lead to bias in oscillation parameters

• T2K CCQE result: model describing one track (grey star, red dashed line) data is not sufficient to also describe two track (black cross) topology.

T.Wąchała, Recent results on neutrino cross sections

CCQE in MINERvA

U

NuWro LFG+RPA

Absolutely Normalized

0.5

 $Q^2_{OE,p} (GeV^2)$

NuWro LFG+RPA+Nieves

- Models which describe well CCQE in terms of the outgoing muon kinematics do not work well in the case of outgoing proton kinematics
- Muon kinematics result (Q² estimated using muon kinematics) favors RFG + TEM model and suggests the presence of the initial state NN correlations

Proton kinematics

SENIE REC

NuWro RFG

uWro LFG+RPA

NuWro RFG+TEM

nWro LFG+RPA+Nieves

 v_{μ} Tracker $\rightarrow \mu^{*} p$ MINERVA Preliminary

 $Q^2_{OE,p}$ (GeV²)

Absolutely Normalized

 $\textrm{Ig/d}Q^2_{QE,p} (\ cm^2/GeV^2/\textrm{nucleon}$

6

5

0.5

• In contrast: Proton kinematics result (Q² estimated using proton kinematics) favors straightforward GENIE RFG model

Ratio to GENIE

Phys. Rev. D 91, 071301 (2015)

1.6

1.4

0.8

0.6

sections

ArgoNeuT: Observation of 1µ+2p events

- Current (common) CCQE model in Monte Carlo:
 - Form factors tuned from e-p scattering and bubble chamber experiments
 - → Nuclear effects: RFG + Pauli blocking
- MiniBooNE experiment shows large discrepancy wrt this model
- New models include:
 - → Possibility of interactions with NN pairs (2p2h, MEC)
 - → Long range correlations between nucleons (RPA)

- ArgoNeut experiment sees events with muon and two protons <u>suggesting presence of NN correlations</u> <u>and/or two-body currents (MEC, 2p2h)</u>
- 4 back-to-back proton pair events ("hammer") observed: $\cos \gamma < -0.95$, $P_{p1} \sim P_{p2} \sim P_{p2}$ most probably effect of initial state NN short-range correlations (SRC)

T.Wąchała, Recent results on neutrino cross sections

T2K: CC0 π (CCQE) measurement

- T2K shows that also new models which include NN correlations (RPA + 2p2h) cannot describe the full phase-space (eg. forward region).
- Lack of statistical power to discriminate between models.
- It is crucial to estimate the uncertainties of the new models.

sections

μ

MINERvA: Single pion production

- Neutrino induced single pion production is one of the main backgrounds for neutrino oscillation experiments.
- Large effects from final state interactions (FSI): pion absorption, scattering, charge exchange in the nucleus
- MINERvA data favors presence of FSI in neutrino event generators.
- MiniBooNE sees harder momenta, more events and less FSI than MINERvA. MINERvA - MiniBooNE discrepancy in neutral pion production.

Elastic Scattering

Absorption

(by T. Golan

POT Normalized

Shape Measurement

50

20

18

16

14

12 10

8

2

1.6

1.4 1.2

0.8 0.6

 $d\sigma/dT_{\pi}$ (cm²/MeV/nucleon)

Ratio to GENIE

Pion Production

T2K: Charged pion production on water

- Will be able to constrain FSI on different nuclei (Carbon and Oxygen targets in T2K)
- Current T2K result is below GENIE MC prediction → similar to the MiniBooNE result
- At low pion angles (cosθ_π~1) -"suppression" effect - large contribution from coherent pion production

T.Wąchała, Recent results on neutrino cross sections

MINERvA: coherent pion production

- Characteristic feature: low 4momentum transfer to the nucleus (|t| < 0.125 GeV²)
- MINERvA observes coherent pion production for neutrinos and antineutrinos
- NEUT model used in this analysis is out-of-date and is currently being improved.
- Disagreement at the high angles for GENIE.
- This result is a benchmark to test new coherent pion production models in GENIE

Phys. Rev. Lett. 113, 261802 (2014)

T.Wąchała, Recent results on neutrino cross sections

Coherent pion production

Phys. Rev. Lett. 113, 261801 (2014)

- First charge current coherent pion cross section measurement on argon reported by ArgoNeuT important result for future experiments.
- T2K result:
 - → Excess of 55±20 events observed at 2.7 σ → first experimental indication of coherent pion production below 1.5 GeV
 - Cross section calculated using two coherent production models in GENIE: Rein-Seghal, Alvarez-Ruso
 - Currently lack of statistics to distinguish between those two models

$\boldsymbol{v}_{_{e}}$ charged current cross section

- T2K reported in July 2014 the first measurement of the differential electron neutrino cross section at the energies ~1GeV
 - → Results agree with the predictions from NEUT generator
- MINERvA result showed at the NuFact 2015 conference:
 - Consistent with predictions from GENIE neutrino event generator
 - Ratio of electron neutrino and muon neutrino cross sections agrees between data and GENIE predictions

Ustroń, 17.09.2015

T.Wąchała, Recent results on neutrino cross sections

Cross section ratios on various nuclear

- Data/MC: good agreement vs $E_{\rm v}$ also at T2K
- At low x, MINERvA observes a deficit that increases with the size of the nucleus.
- At high x, they observe an excess that increases with the size of the nucleus.
- These effects are not reproduced by current neutrino interaction models.

Summary

- Neutrino cross section measurements are important for neutrino oscillation measurements and to understand the nature of neutrino-nucleus scattering.
- Large number of interesting cross section results appeared during the last two years (2013-2015).
- Charge current quasi-elastic scattering (CCQE) is currently under change of paradigm: studying new models (MEC/2p2h). Theoretical convergence is needed to predict the impact of multi-nucleon process in CCQE with sufficient accuracy.
- Pion production (CC1 π) channel has proven to be an excellent probe for the final state interactions.
- There are many models on the market but currently no model is able to explain all CCQE and CC1 π data sets \rightarrow Data reveals many clues and certainly we need more sophisticated models to be implemented into generators.
- Interesting ν_{e} cross section results appeared \rightarrow consistent with Monte Carlo predictions.
- Dependency of charge current cross section ratios on the size of the nucleus needs to be confirmed → waiting for medium energy MINERvA data (much larger statistics)
- We also need more measurements with large statistics (more power to discriminate between various models) and lowered systematic errors → far from 1% normalization uncertainty needed for CP violation measurements

Thank you for your attention!

References

- Covered:
 - https://indico.fnal.gov/conferenceDisplay.py?confId=8903 NuFact 2015 conference slides
 - → http://arxiv.org/abs/1503.07452 T2K on-axis CCQE
 - http://arxiv.org/abs/1409.3835 MINERvA CC coherent pion production measurement
 - → http://arxiv.org/abs/1409.4497 MINERvA CCQE muon+proton sample
 - → http://arxiv.org/abs/1408.0598 ArgoNeuT CC coherent pion production cross section on argon
 - http://arxiv.org/abs/1407.7389 T2K inclusive nue CC differential cross section
 - → http://arxiv.org/abs/1407.4256 T2K on-axis cross section measurement
 - http://arxiv.org/abs/1406.6415 MINERvA pion production differential cross section
 - → http://arxiv.org/abs/1405.4261 ArgoNeuT 1mu+2p events
 - http://arxiv.org/abs/1403.2103 MINERvA cross section ratio with different targets
 - → http://arxiv.org/abs/1305.2243, http://arxiv.org/abs/1305.2234 MINERvA CCQE measurements
- Not covered:
 - → http://arxiv.org/abs/1503.02107 MINERvA CCpi0
 - http://arxiv.org/abs/1404.4809 ArgoNeuT CC-inclusive differential cross section on Ar
 - → http://arxiv.org/abs/1309.7257 MiniBooNE NCEL cross section
 - http://arxiv.org/abs/1302.4908 T2K first CC inclusive cross section result

T.Wąchała, Recent results on neutrino cross sections