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Free muon decay
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• Well known SM process 

• Source of New Physics constraints 

• NLO corrections calculated in 1950s 

• NNLO corrections are also known 

• Only lepton flavour conserving decay 
modes have been observed 

• Anomalous magnetic moment may 
indicate a need for a NP contributions



• Similar type of operators may contribute to g-2 and 
Charged Lepton Flavour Violation (CLFV) 

• CLFV is suppressed in SM 

• Three interesting CLFV processes 

  

muon electron conversion 
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Three processes with bound 
muons
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Proces SM rate Why important?
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Observation 
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Physics
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Muon electron conversion
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Muon converts to electron 
without emitting neutrinos 

Lepton family number not conserved 



Muon electron conversion
• Clean experimental signature — mono-energetic 

electron  

• Current limit on the ratio R of the conversion to the 
capture R < 7⇥ 10�13
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• Planned experiments expect to improve R by 
~4 orders of magnitude, equivalent to probing 
New Physics scale up to 10 000 TeV! 

• Conversion can probe larger class of operators 
than 



Bound muon decay
• Muon DIO: standard muon decay 

into an electron and two neutrinos, 
with the muon and a nucleus 
forming bound state 

• For a free muon, energy and 
momentum conservation restricts 
electron spectrum to  

• For DIO, momentum can be 
exchanged between the nucleus 
and both the muon and the electron 
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DIO Spectrum

TWIST, 2009 COMET, 
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End- 
point 

Region
Central  
Region

Most important effect:

muon motion in an atom exchange of a hard photon

Corrections:

final state interaction finite size of the nucleus

recoil effects

Radiative corrections!

Two 
regions



Central  
Region

Also known as 
Michel Region



Central region

• Typical momentum transfer between nucleus and 
muon is of the order of 

• Requires resummation 

• Dominant effect — muon motion in the initial state 

• Similar problems — decays of heavy quarks in 
mesons
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QED shape function

• Charged particle in the external field is almost on-shell 

• We are interested only in the leading corrections

µ e

ν

ν

⇡µ = i@µ � eAµ

1

(pe + ⇡)2
⇡ 1

p2e + 2pe · ⇡
! �(p2e + 2pe · ⇡)



QED shape function
• Shape function is defined as an expectation value: 

• We work in light-cone gauge   

• Normalization: 

S(�) =

Z
d3x ?(x)�(�� n · ⇡) (x)

n ·A = 0

Z 1

�1
d�S(�) = 1

Final state  
interaction, required  
by gauge invariance

Momentum 
distribution



Power counting
•                                 (muon momentum in an atom) 

• Shape function behaves as 

• First moment is zero in the leading order 

• Second moment 
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QED shape function
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Spectrum can be calculated using factorization formula

A. Czarnecki, R.S. 

Phys.Rev. D92 (2015), 053004
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Leading  
corrections 

and their relation  
to the experimental data 
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Endpoint region

• Typical momentum transfer between the 
nucleus and the muon is of the order of the 
muon mass 

• Both wave functions and propagators can 
be expanded in powers of

Ee ⇠ mµ
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Endpoint energy
E

max
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+ E
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+ E
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Both corrections decrease the endpoint energy

(kinetic energy of 
the nucleus)



Endpoint expansion
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Endpoint expansion
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Radiative corrections
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Higher order terms
• Expansion parameter is         , again very similar to 

the calculations of photoelectric effect 

• Higher order terms were calculated numerically; 
they give -21% correction for a point-like nucleus 

• Finite-size nucleus corrections suppress the higher 
order terms  

• Also higher orders in     may be required for precise 
determination of experimental background
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Summary
• Searches for rare decays require accurate predictions for 

the SM background 

• TWIST measurement of the DIO spectrum is sensitive to 
radiative corrections 

• Muon DIO spectrum: 

• We have radiative corrections in regions relevant for 
experiment 

• Ultimate goal is a correction to the spectrum in the 
whole energy range


