Roots of unity and lepton mixing patterns from finite flavour symmetries

Walter Grimus
University of Vienna, Faculty of Physics

XXXIX International Conference of Theoretical Physics
"Matter to the Deepest"
Ustrón, Poland, September 13-18, 2015

Talk based on the paper

Renato M. Fonseca, Walter Grimus
JHEP 1409 (2014) 033
arXiv:1405.3678

Introduction

- 3×3 mixing matrix U in lepton sector: two large and one small mixing angle explanation through underlying flavour symmetry?
- Notation: $|U|^{2} \equiv\left(\left|U_{i j}\right|^{2}\right),|T| \equiv\left(\left|T_{i j}\right|\right)$, flavour group G
- Idea by C.S. Lam (2008):
"residual symmetries" in mass matrices
with G non-abelian
- Diagonalization of mass matrices effectively replaced by diagonalization of symmetry transformation matrices
- Three possibilities:
- one row of $|U|^{2}$ determined
- one column of $|U|^{2}$ determined
- $|U|^{2}$ completely determined

Introduction

Complete classification of possible $|U|^{2}$
 under the following assumptions:
 - Three flavours
 - Majorana neutrinos
 - G finite

Result:

17 sporadic mixing patterns and one infinite series (modulo permutations)

NOTE:

Finiteness of G is an ad hoc assumption for the mathematical treatment of the problem!

Residual symmetries

Fixing the notation:

Mass terms: Majorana neutrinos $\Rightarrow M_{\nu}^{T}=M_{\nu}$

$$
\mathcal{L}_{\mathrm{mass}}=-\bar{\ell}_{L} M_{\ell} \ell_{R}+\frac{1}{2} \nu_{L}^{T} C^{-1} M_{\nu} \nu_{L}+\text { H.c. }
$$

Diagonalization:
$U_{\ell}^{\dagger} M_{\ell} M_{\ell}^{\dagger} U_{\ell}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right), \quad U_{\nu}^{T} M_{\nu} U_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
Mixing matrix: $U=U_{\ell}^{\dagger} U_{\nu}$

Residual symmetries

Idea of residual symmetries: C.S. Lam

- Weak basis $\Rightarrow \ell_{L}, \nu_{L}$ in same multiplet of G
- Flavour group G broken to subgroup G_{ℓ} in the charged-lepton and G_{ν} in the neutrino sector
- Charged-lepton and neutrino mass spectrum non-degenerate $\Rightarrow G_{\ell}$ and G_{ν} abelian
- Invariance of mass matrices under residual groups:

$$
\begin{gathered}
T \in G_{\ell} \Rightarrow T^{\dagger} M_{\ell} M_{\ell}^{\dagger} T=M_{\ell} M_{\ell}^{\dagger} \\
S \in G_{\nu} \Rightarrow \quad S^{T} M_{\nu} S=M_{\nu} \\
G_{\ell} \subseteq U(1) \times U(1) \times U(1), \quad G_{\nu} \subseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{gathered}
$$

- All $T \in G_{\ell}$ and $M_{\ell} M_{\ell}^{\dagger}$ simultaneously diagonalizable! All $S \in G_{\ell}$ and M_{ν} simultaneously diagonalizable!

Residual symmetries

In essence:

Diagonalization of $M_{\ell} M_{\ell}^{\dagger}$ replaced by diagonalization of the $T \in G_{\ell}$ Diagonalization of M_{ν} replaced by diagonalization of the $S \in G_{\nu}$

Remarks:

- If a single $T \in G_{\ell}$ has non-generate eigenvalues, then U_{ℓ} uniquely determined and $G_{\ell} \cong \mathbb{Z}_{N}$ (finiteness of $G!$)
- One can show:

If all $T \in G_{\ell}$ degenerate, one can confine oneself to two generators T_{1}, T_{2} of G_{ℓ} and $G_{\ell} \cong K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (Klein's four group)

- Without loss of generality $G_{\nu} \cong K$

Residual symmetries

Note:

- This method determines entries of $|U|^{2}$ as pure numbers, independent of parameters of any underlying theory.
- Therefore, residual symmetries cannot fix Majorana phases.
- $|U|^{2}$ is only determined up to independent permutations from the left and right.
- This method gives no information at all on the lepton masses!

Residual symmetries

From groups to mixing matrices:
(1) Choose group G which has subgroup $G_{\nu}=K$
(2) Find all subgroups G_{ℓ} which completey fix U_{ℓ}
(3) Compute $|U|^{2}$ for all these subgroups

Many authors: (incomplete list)
C.S. Lam (2008); Ge, Dicus, Repko; He, Yin; Hernandez, Smirnov;
B. Hu; de Adelhart Toorop, Feruglio, Hagedorn; Holthausen, Lim, Lindner; Hagedorn, Meroni, Vitale;...

General analysis: group-independent!

General analysis

Determination of possible forms of T

Preliminaries:

- Basis where $G_{\nu}=\left\{\mathbb{1}, S_{1}, S_{2}, S_{3}\right\}$ with $S_{1}=\operatorname{diag}(1,-1,-1), S_{2}=\operatorname{diag}(-1,1,-1), S_{3}=S_{1} S_{2}$
- Consequently $U_{\nu}=\mathbb{1}, U=U_{\ell}^{\dagger}, U T U^{\dagger}=\hat{T}$ diagonal
- $T \Rightarrow|U|^{2}$

General analysis

Series of steps: $\left(3 \times 3\right.$ permutation matrices $\left.P_{1}, P_{2}, P\right)$
(1) 5 basic forms of $|T|$ modulo permutations $P_{1}|T| P_{2}$
(2) Internal (CKM-type) phase of T
(3) Inequivalent forms of $|T|$ through $|T| \rightarrow|T| P$
(9) Exclusion of forms 1 and 4 which do not lead to finite groups
(5) External (Majorana-type) phases of T
(0. Possible patterns of $|U|^{2}$ modulo permutations $P_{1}|U|^{2} P_{2}$

General analysis

Basic forms of $|T|$:
(1) $Y^{(i j)} \equiv T^{\dagger} S_{i} T S_{j} \in G$
$\Rightarrow S_{j}^{-1} Y^{(i j)} S_{j}=\left(Y^{(i j)}\right)^{\dagger}, \operatorname{det} Y^{(i j)}=1$
\Rightarrow eigenvalues $1, \lambda^{(i j)},\left(\lambda^{(i j)}\right)^{*}$
(2) $\sum_{k=1}^{3} S_{k}=-\mathbb{1} \Rightarrow \sum_{k=1}^{3} \operatorname{Tr} Y^{(k j)}=\sum_{k=1}^{3} \operatorname{Tr} Y^{(i k)}=1$ or
$\sum_{k=1}^{3}\left(\lambda^{(k j)}+\lambda^{(k j)^{*}}\right)+2=\sum_{k=1}^{3}\left(\lambda^{(i k)}+\lambda^{(i k)^{*}}\right)+2=0$
for $i, j=1,2,3$
(3) $\left|T_{i j}\right|^{2}=\frac{1}{2}\left(1+\operatorname{Re} \lambda^{(i j)}\right)$

General analysis

Generic equation:

$$
\sum_{k=1}^{3}\left(\lambda_{k}+\lambda_{k}^{*}\right)+2=0
$$

group G finite \Rightarrow all $\lambda^{(i j)}$ roots of unity
vanishing sum of roots of unity \Rightarrow find solutions by using a Theorem of Conway and Jones

Only three solutions:

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left\{\begin{array}{cc}
(i, \omega, \omega) & (\mathrm{A}) \\
\left(\omega, \beta, \beta^{2}\right) & \text { (B) } \\
(-1, \lambda,-\lambda) & \text { (C) }
\end{array}\right.
$$

$\omega=e^{2 \pi i / 3}, \beta=e^{2 \pi i / 5}, \lambda=e^{i \vartheta}$ (arbitrary root of unity)

General analysis

$\left.\begin{array}{ll}\text { Form 1: } & \\ \text { Form 2: } & |T|=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\end{array}\right) \\ 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$
Form 3: $\quad|T|=\left(\begin{array}{ccc}\frac{1}{2} & \frac{\sqrt{5}-1}{4} & \frac{\sqrt{5}+1}{4} \\ \frac{\sqrt{5}+1}{4} & \frac{1}{2} & \frac{\sqrt{5}-1}{4} \\ \frac{\sqrt{5}-1}{4} & \frac{\sqrt{5}+1}{4} & \frac{1}{2}\end{array}\right)$
Form 4: $\quad|T|=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{5}-1}{4} & \frac{\sqrt{5}+1}{4} \\ \frac{1}{2} & \frac{\sqrt{5}+1}{4} & \frac{\sqrt{5}-1}{4}\end{array}\right)$
Form 5: $\quad|T|=\left(\begin{array}{ccc}1 & \cos \theta & \sin \theta \\ 0 & \cos \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left[\sin ^{2} \theta=(1-\cos \vartheta) / 2\right]$

Results

General solution: Fonseca, Grimus (2014), arXiv:1405.3678

- Complete solution: 17 sporadic patterns of $|U|^{2}$, one series
- All sporadic cases are ruled out!
- Infinite series: depends on $\sigma=e^{2 \pi i p / n}$ with $p, n \in \mathbb{Z}$ \exists range of σ such that $|U|^{2}$ compatible with data

Results

Infinite series:

Case $\mathcal{C}_{2}: \quad|U|^{2}=\frac{1}{3}\left(\begin{array}{ccc}1 & 1+\operatorname{Re} \sigma & 1-\operatorname{Re} \sigma \\ 1 & 1+\operatorname{Re}(\omega \sigma) & 1-\operatorname{Re}(\omega \sigma) \\ 1 & 1+\operatorname{Re}\left(\omega^{2} \sigma\right) & 1-\operatorname{Re}\left(\omega^{2} \sigma\right)\end{array}\right)$

$$
\omega=\exp (2 \pi i / 3), \quad \sigma=\exp (2 i \pi p / n) \text { with } p \text { coprime to } n
$$

Three choices:

- red: $\cos ^{2} \theta_{13} \sin ^{2} \theta_{12}=1 / 3$
- blue: $\cos ^{2} \theta_{13} \cos ^{2} \theta_{12}=1 / 3$
- green: $\sin ^{2} \theta_{13}=1 / 3$

Properties of $|U|^{2}$ in red infinite series:

- $|U|^{2}$ depends on $\operatorname{Re} \sigma^{6}:-0.69 \lesssim \operatorname{Re} \sigma^{6} \lesssim-0.37$ (Forero et al., thanks to M. Tórtola)
- CKM-type phase in $|U|^{2}$ trivial $(\pm \pi)$
- $\sin ^{2} \theta_{12} \geq 1 / 3$

Results

Minimal groups for the infinite series:

- $\Delta\left(6 m^{2}\right) \equiv\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes S_{3}$ with $m=\operatorname{lcm}(6, n) / 3$ when $9 \nmid n$
- $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m / 3}\right) \rtimes S_{3}$ with $m=\operatorname{lcm}(2, n)$ when $9 \mid n$

For instance:

- $n=9,18$ with $m=18, G=\left(\mathbb{Z}_{18} \times \mathbb{Z}_{6}\right) \rtimes S_{3}$ and $\operatorname{order}(G)=648$
- $n=11,22,33,66$ with $m=22, G=\Delta\left(6 \times 22^{2}\right)$ and $\operatorname{order}(G)=2904$

Results

Sporadic mixing pattern with minimal groups:
One non-degenerate $T \hookrightarrow \mathcal{C}_{i}$, two degenerate $T_{1}, T_{2} \hookrightarrow \mathcal{C} \mathcal{D}_{j}$

- S_{4} for $\mathcal{C}_{1} / \mathcal{C D}_{2}$
- $\operatorname{PSL}(2,7)$ for $\mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{5}, \mathcal{C D}_{1}$
- $\Sigma(360 \times 3)$ for $\mathcal{C}_{6} / \mathcal{C}_{15}, \mathcal{C}_{7}, \mathcal{C}_{8} / \mathcal{C}_{17}, \mathcal{C}_{9}, \mathcal{C}_{10}, \mathcal{C}_{14}, \mathcal{C}_{16}, \mathcal{C D}_{4}$
- A_{5} for $\mathcal{C}_{11} / \mathcal{C}_{13}, \mathcal{C}_{12}, \mathcal{C D}_{3}$
- A_{4} for \mathcal{C}_{30}
de Adelhart Toorop, Feruglio, Hagedorn, arXiv:1112.1340 Hagedorn, Meroni, Vitale, arXiv:1307.5308
Example of a sporadic case: $(5-\sqrt{21}) / 12 \simeq 0.035>s_{13}^{2}$

$$
\mathcal{C}_{5}: \quad|U|^{2}=\left(\begin{array}{ccc}
\frac{1}{12}(5+\sqrt{21}) & \frac{1}{6} & \frac{1}{12}(5-\sqrt{21}) \\
\frac{1}{12}(5-\sqrt{21}) & \frac{1}{6} & \frac{1}{12}(5+\sqrt{21}) \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}\right)
$$

- Hypothesis of $|U|^{2}$ determined by residual symmetries leads to 17 sporadic mixing pattern and one series
- All 17 sporadic mixing patterns are ruled out
- Series depends on parameter $\sigma=\exp (2 \pi i p / n)$ with rational number $p / n,|U|^{2}$ compatible with data for range of σ
- Predictions of series:
$\sin ^{2} \theta_{12} \geq 1 / 3$, trivial CKM-type phase

Thank you for your attention!

