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Introduction

3× 3 mixing matrix U in lepton sector:
two large and one small mixing angle
explanation through underlying flavour symmetry?

Notation: |U|2 ≡
(
|Uij |2

)
, |T | ≡ (|Tij |), flavour group G

Idea by C.S. Lam (2008):
“residual symmetries” in mass matrices
with G non-abelian

Diagonalization of mass matrices effectively replaced by
diagonalization of symmetry transformation matrices
Three possibilities:

one row of |U|2 determined
one column of |U|2 determined
|U|2 completely determined
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Introduction

Complete classification of possible |U|2
under the following assumptions:

Three flavours

Majorana neutrinos

G finite

Result:

17 sporadic mixing patterns and one infinite series
(modulo permutations)

NOTE:
Finiteness of G is an ad hoc assumption for the mathematical
treatment of the problem!
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Residual symmetries

Fixing the notation:
Mass terms: Majorana neutrinos ⇒ MT

ν = Mν

Lmass = −¯̀
LM``R +

1

2
νTL C−1MννL + H.c.

Diagonalization:

U†`M`M
†
`U` = diag

(
m2

e ,m
2
µ,m

2
τ

)
, UT

ν MνUν = diag (m1,m2,m3)

Mixing matrix: U = U†`Uν
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Residual symmetries

Idea of residual symmetries: C.S. Lam

Weak basis ⇒ `L, νL in same multiplet of G

Flavour group G broken to subgroup G` in the charged-lepton
and Gν in the neutrino sector

Charged-lepton and neutrino mass spectrum non-degenerate
⇒ G` and Gν abelian

Invariance of mass matrices under residual groups:

T ∈ G` ⇒ T †M`M
†
`T = M`M

†
`

S ∈ Gν ⇒ STMνS = Mν

G` ⊆ U(1)× U(1)× U(1), Gν ⊆ Z2 × Z2 × Z2

All T ∈ G` and M`M
†
` simultaneously diagonalizable!

All S ∈ G` and Mν simultaneously diagonalizable!
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Residual symmetries

In essence:

Diagonalization of M`M
†
` replaced by diagonalization of the T ∈ G`

Diagonalization of Mν replaced by diagonalization of the S ∈ Gν

Remarks:

If a single T ∈ G` has non-generate eigenvalues, then U`
uniquely determined and G` ∼= ZN (finiteness of G !)

One can show:
If all T ∈ G` degenerate, one can confine oneself to
two generators T1, T2 of G` and
G` ∼= K ∼= Z2 × Z2 (Klein’s four group)

Without loss of generality Gν ∼= K
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Residual symmetries

Note:

This method determines entries of |U|2 as pure numbers,
independent of parameters of any underlying theory.

Therefore, residual symmetries cannot fix Majorana phases.

|U|2 is only determined up to independent permutations from
the left and right.

This method gives no information at all on the lepton masses!
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Residual symmetries

From groups to mixing matrices:

1 Choose group G which has subgroup Gν = K

2 Find all subgroups G` which completey fix U`
3 Compute |U|2 for all these subgroups

Many authors: (incomplete list)
C.S. Lam (2008); Ge, Dicus, Repko; He, Yin; Hernandez, Smirnov;
B. Hu; de Adelhart Toorop, Feruglio, Hagedorn; Holthausen, Lim,
Lindner; Hagedorn, Meroni, Vitale;. . .

General analysis: group-independent!
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General analysis

Determination of possible forms of T

Preliminaries:

Basis where Gν = {1,S1, S2,S3} with
S1 = diag (1,−1,−1), S2 = diag (−1, 1,−1), S3 = S1S2

Consequently Uν = 1, U = U†` , UTU† = T̂ diagonal

T ⇒ |U|2
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General analysis

Series of steps: (3× 3 permutation matrices P1, P2, P)

1 5 basic forms of |T | modulo permutations P1|T |P2

2 Internal (CKM-type) phase of T

3 Inequivalent forms of |T | through |T | → |T |P
4 Exclusion of forms 1 and 4 which do not lead to finite groups

5 External (Majorana-type) phases of T

6 Possible patterns of |U|2 modulo permutations P1|U|2P2
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General analysis

Basic forms of |T |:
1 Y (ij) ≡ T †SiTSj ∈ G

⇒ S−1j Y (ij)Sj = (Y (ij))†, detY (ij) = 1

⇒ eigenvalues 1, λ(ij), (λ(ij))∗

2

3∑
k=1

Sk = −1 ⇒
3∑

k=1

TrY (kj) =
3∑

k=1

TrY (ik) = 1 or

3∑
k=1

(
λ(kj) + λ(kj)

∗)
+ 2 =

3∑
k=1

(
λ(ik) + λ(ik)

∗)
+ 2 = 0

for i , j = 1, 2, 3

3 |Tij |2 = 1
2

(
1 + Reλ(ij)

)
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General analysis

Generic equation:

3∑
k=1

(λk + λ∗k) + 2 = 0

group G finite ⇒ all λ(ij) roots of unity
vanishing sum of roots of unity ⇒ find solutions by using a
Theorem of Conway and Jones

Only three solutions:

(λ1, λ2, λ3) =


(i , ω, ω) (A)(
ω, β, β2

)
(B)

(−1, λ, −λ) (C)

ω = e2πi/3, β = e2πi/5, λ = e iϑ (arbitrary root of unity)
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General analysis

Form 1: |T | =


1√
2

1
2

1
2

1
2

1√
2

1
2

1
2

1
2

1√
2


Form 2: |T | =

 0 1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2


Form 3: |T | =

 1
2

√
5−1
4

√
5+1
4√

5+1
4

1
2

√
5−1
4√

5−1
4

√
5+1
4

1
2


Form 4: |T | =


1√
2

1
2

1
2

1
2

√
5−1
4

√
5+1
4

1
2

√
5+1
4

√
5−1
4


Form 5: |T | =

 1 0 0
0 cos θ sin θ
0 sin θ cos θ

 [sin2 θ = (1− cosϑ)/2]
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Results

General solution: Fonseca, Grimus (2014), arXiv:1405.3678

Complete solution: 17 sporadic patterns of |U|2, one series

All sporadic cases are ruled out!

Infinite series: depends on σ = e2πip/n with p, n ∈ Z
∃ range of σ such that |U|2 compatible with data
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Results

Infinite series:

Case C2 : |U|2 =
1

3

 1 1 + Reσ 1− Reσ
1 1 + Re (ωσ) 1− Re (ωσ)
1 1 + Re

(
ω2σ

)
1− Re

(
ω2σ

)


ω = exp(2πi/3), σ = exp (2iπp/n) with p coprime to n

Three choices:

red: cos2 θ13 sin2 θ12 = 1/3

blue: cos2 θ13 cos2 θ12 = 1/3

green: sin2 θ13 = 1/3

Properties of |U|2 in red infinite series:

|U|2 depends on Reσ6: −0.69 . Reσ6 . −0.37
(Forero et al., thanks to M. Tórtola)

CKM-type phase in |U|2 trivial (±π)

sin2 θ12 ≥ 1/3
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Results

Minimal groups for the infinite series:

∆(6m2) ≡ (Zm × Zm) o S3 with m = lcm(6, n)/3 when 9 - n(
Zm × Zm/3

)
o S3 with m = lcm(2, n) when 9 | n

For instance:

n = 9, 18 with m = 18, G = (Z18 × Z6) o S3 and
order(G ) = 648

n = 11, 22, 33, 66 with m = 22, G = ∆(6× 222) and
order(G ) = 2904
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Results

Sporadic mixing pattern with minimal groups:
One non-degenerate T ↪→ Ci , two degenerate T1, T2 ↪→ CDj

S4 for C1/CD2

PSL (2, 7) for C3, C4, C5, CD1

Σ (360× 3) for C6/C15, C7, C8/C17, C9, C10, C14, C16, CD4

A5 for C11/C13, C12, CD3

A4 for C30
de Adelhart Toorop, Feruglio, Hagedorn, arXiv:1112.1340
Hagedorn, Meroni, Vitale, arXiv:1307.5308

Example of a sporadic case: (5−
√

21)/12 ' 0.035 > s213

C5 : |U|2 =


1
12

(
5 +
√

21
)

1
6

1
12

(
5−
√

21
)

1
12

(
5−
√

21
)

1
6

1
12

(
5 +
√

21
)

1
6

2
3

1
6


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Summary

Hypothesis of |U|2 determined by residual symmetries leads to
17 sporadic mixing pattern and one series

All 17 sporadic mixing patterns are ruled out

Series depends on parameter σ = exp(2πip/n) with rational
number p/n, |U|2 compatible with data for range of σ

Predictions of series:
sin2 θ12 ≥ 1/3, trivial CKM-type phase

Thank you for your attention!
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