Parton distributions at the LHC

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

LHCPhenoNet Summer School, Cracow, Sep 11, 2013

Sven-Olaf Moch

Parton distributions at the LHC - p.1

Plan

- Cross sections in perturbative QCD
- Non-perturbative input parameters
 - parton distributions
 - strong coupling $\alpha_s(M_Z)$
 - heavy quark masses
- Constraints from LHC measurements
 - W^{\pm} and Z-boson production

Example from LHC Higgs measurements

- Signal strength of all analyzed decay modes
 - normalization to Standard Model expectation
 - accuracy of $\sigma_{
 m SM}$ crucial

QCD factorization

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, \dots ($\mathcal{O}(\text{few}\%)$) theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Higgs production in gg-fusion

Effective theory

- Integration of top-quark loop (finite result)
 - decay width $H \rightarrow gg$ ($m_q = 0$ for light quarks, m_t heavy)

$$\Gamma_{H \to gg} = \frac{G_{\mu} m_H^3}{64 \sqrt{2} \pi^3} \alpha_s^2 f\!\left(\frac{m_H^2}{4m_t^2}\right)$$

- Effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
 - operator $HG^{\mu\nu a} G^a_{\mu\nu}$ relates to stress-energy tensor
 - additional renormalization proportional to QCD β-function required Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77

QCD corrections to ggF

- Hadronic cross section $\sigma_{pp
 ightarrow H}$ with $au = m_H^2/S$
 - renormalization/factorization (hard) scale $\mu = \mathcal{O}(m_H)$

$$\sigma_{pp \to H} = \sum_{ij} \int_{\tau}^{1} \frac{dx_1}{x_1} \int_{x_1}^{1} \frac{dx_2}{x_2} f_i\left(\frac{x_1}{x_2}, \mu^2\right) f_j\left(x_2, \mu^2\right) \hat{\sigma}_{ij \to H}\left(\frac{\tau}{x_1}, \frac{\mu^2}{m_H^2}, \alpha_s(\mu^2)\right)$$

• Partonic cross section $\hat{\sigma}_{ij \rightarrow H}$

$$\hat{\sigma}_{ij \to H} = \alpha_s^2 \left[\hat{\sigma}_{ij \to H}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to H}^{(1)} + \alpha_s^2 \, \hat{\sigma}_{ij \to H}^{(2)} + \dots \right]$$

NLO: standard approximation (large uncertainties)

Perturbation theory at work

- Apparent convergence of perturbative expansion
 - NNLO corrections still large Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation

Non-perturbative parameters

Input for collider phenomenology

- Non-perturbative parameters are universal
- Determination from comparision to experimental data
 - masses of heavy quarks m_c , m_b , m_t
 - parton distribution functions $f_i(x, \mu^2)$
 - strong coupling constant $\alpha_s(M_Z)$

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- Non-perturbative parameters sensitive to
 - radiative corrections at higher orders
 - renormalization and factorization scales μ_R , μ_F
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$

• .

Parton evolution

Feynman diagrams in leading order

• Proton in resolution $1/Q \longrightarrow$ sensitive to lower momentum partons

Parton evolution

Feynman diagrams in leading order

Proton in resolution 1/Q
 sensitive to lower momentum partons

- Evolution equations for parton distributions f_i
 - predictions from fits to reference processes (universality)

$$\frac{d}{d\ln\mu^2} f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](x)$$

Splitting functions *P*

$$P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$$

NLO: standard approximation (large uncertainties)

Parton distributions at the LHC - p.9

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton luminosity at LHC

- LHC run at $\sqrt{s} = 7/8$ TeV
 - parton kinematics well covered by HERA and fixed target experiments
- Parton kinematics at effective $\langle x \rangle = M/\sqrt{S}$
 - 100 GeV physics: small-x, sea partons
 - TeV scales: large-x

Parton distribution fits

Example

ABM PDF set Alekhin, Blümlein, S.M. '12

Theory considerations

- Consistent theory description for consistent data sets
- Determination of PDFs and strong coupling constant α_s to NNLO QCD
- Consistent scheme for treatment of heavy quarks
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
- Full account of error correlations

Data considered in the fit

- Analysis of world data for deep-inelastic scattering and fixed-target data for Drell-Yan process
 - inclusive DIS data HERA, BCDMS, NMC, SLAC
 - Drell-Yan data (fixed target) E-605, E-866
 - neutrino-nucleon DIS data (di-muon production) CCFR/NuTeV

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of the non-perturbative parameters
 - parton distributions
 - strong coupling $\alpha_s(M_Z)$
 - heavy quark masses

PDF ansatz

• Parameterization at low scale Q_0 for sea-quarks

PDF ansatz (details)

- ABM PDFs parameterized at scale $Q_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M. '12
 - ansatz for valence-/sea-quarks, gluon with polynomial P(x)
 - strange quark is taken in charge-symmetric form
 - 24 parameters in polynomials P(x)
 - 4 additional fit parameters: $\alpha_s^{(n_f=3)}(\mu=3 \text{ GeV}), m_c, m_b$ and deuteron correction

$$\begin{aligned} xq_v(x,Q_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xu_s(x,Q_0^2) &= x\bar{u}_s(x,Q_0^2) &= A_{us} x^{a_{us}} (1-x)^{b_{us}} x^{a_{us}} P_{us}(x) \\ x\Delta(x,Q_0^2) &= xd_s(x,Q_0^2) - xu_s(x,Q_0^2) &= A_{\Delta} x^{a_{\Delta}} (1-x)^{b_{\Delta}} x^{P_{\Delta}(x)} \\ xs(x,Q_0^2) &= x\bar{s}(x,Q_0^2) &= A_s x^{a_s} (1-x)^{b_s} , \\ xg(x,Q_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_g(x) \end{aligned}$$

 Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Parton distributions for the LHC

- 1σ band for ABM11 PDFs (NNLO, 4-flavors) at $\mu = 2 \text{ GeV}$ Alekhin, Blümlein, S.M.'12
- comparison with: JR09 (solid lines), MSTW (dashed dots) and NN21 (dashes)
- Some interesting observations to be made ...

Quality of fit

	Experiment	NDP	$\chi^2(NNLO)$	$\chi^2(\text{NLO})$
DIS inclusive	H1&ZEUS	486	537	531
	H1	130	137	132
	BCDMS	605	705	695
	NMC	490	665	661
	SLAC-E-49a	118	63	63
	SLAC-E-49b	299	357	357
	SLAC-E-87	218	210	219
	SLAC-E-89a	148	219	215
	SLAC-E-89b	162	133	132
	SLAC-E-139	17	11	11
	SLAC-E-140	26	28	29
Drell-Yan	FNAL-E-605	119	167	167
	FNAL-E-866	39	52	55
DIS di-muon	NuTeV	89	46	49
	CCFR	89	61	62
Total		3036	3391	3378

Covariance matrix

• Correlations of PDF fit parameters (I)

	a_u	b_u	<i>γ</i> 1, <i>u</i>	ү 2,и	a_d	b_d	A_{Δ}	b_Δ	A_{us}	a_{us}	b_{us}	a_g	b_g	$\gamma_{1,g}$
a_u	1.0000	0.9692	0.9787	-0.7929	0.7194	0.5279	-0.1460	-0.1007	0.7481	0.6835	-0.4236	-0.2963	0.3391	0.3761
b_u		1.0000	0.9396	-0.7244	0.6792	0.4939	-0.1146	-0.1099	0.7404	0.6840	-0.4146	-0.3138	0.3464	0.3738
$\gamma_{1,u}$			1.0000	-0.8940	0.6506	0.4646	-0.1865	-0.0539	0.6728	0.6093	-0.4799	-0.2755	0.3441	0.3717
<i>γ</i> 2, <i>u</i>				1.0000	-0.4102	-0.2267	0.2357	-0.0182	-0.4075	-0.3495	0.4543	0.1713	-0.3156	-0.3149
a_d					1.0000	0.8827	-0.2155	-0.1964	0.6875	0.6435	-0.3030	-0.3354	0.2635	0.3500
b_d						1.0000	-0.2462	-0.0979	0.5359	0.5099	-0.2957	-0.3443	0.3157	0.3763
A_{Δ}							1.0000	-0.2068	-0.0689	-0.0698	0.2381	-0.0168	0.0384	0.0453
b_Δ								1.0000	0.1015	0.1279	-0.4146	-0.0852	-0.1185	-0.0892
A_{us}									1.0000	0.9884	-0.4678	-0.4679	0.1961	0.2504
a_{us}										1.0000	-0.4520	-0.5195	0.1982	0.2596
b_{us}											1.0000	0.1436	0.0444	-0.0180
a_g												1.0000	-0.6289	-0.7662
b_g													1.0000	0.9392
$\gamma_{1,g}$														1.0000

Covariance matrix

Correlations of PDF fit parameters (II)

	$\alpha_s(\mu_0)$	$\gamma_{1,\Delta}$	$\gamma_{1,us}$	$\gamma_{1,d}$	$\gamma_{2,d}$	A_s	b_s	a_s	<i>ү</i> 3,и	$m_c(m_c)$	γ3,us	$m_b(m_b)$	a_{Δ}
a_u	-0.0435	0.0000	-0.8480	0.6008	0.1535	-0.0034	-0.0437	-0.0355	0.8111	0.0796	-0.4797	0.0044	-0.1718
b_u	-0.1251	0.0316	-0.8375	0.5537	0.1806	0.0008	-0.0345	-0.0276	0.7001	0.0625	-0.4889	-0.0005	-0.1452
<i>γ</i> 1, <i>u</i>	-0.0849	-0.0637	-0.8133	0.5422	0.1667	-0.0324	-0.0671	-0.0638	0.8948	0.0726	-0.4033	0.0075	-0.2028
<i>ү</i> 2,и	0.0920	0.1659	0.5760	-0.3308	-0.2276	0.0799	0.0966	0.1098	-0.9749	-0.0631	0.1728	-0.0142	0.2353
a_d	-0.0321	-0.0137	-0.7618	0.9630	-0.1842	0.0007	-0.0414	-0.0167	0.4878	0.0227	-0.4735	-0.0078	-0.2088
b_d	-0.1666	-0.1167	-0.6060	0.9351	-0.5969	-0.0064	-0.0249	-0.0203	0.3007	-0.0045	-0.3782	-0.0132	-0.2121
A_{Δ}	0.0206	0.8718	0.1649	-0.2544	0.1916	-0.0232	-0.0212	-0.0294	-0.2398	0.0202	0.0667	0.0034	0.9721
b_Δ	0.0086	-0.6291	-0.1067	-0.1834	-0.1103	0.0594	0.0577	0.0711	0.0052	-0.0063	-0.1768	-0.0083	-0.0662
A_{us}	0.0043	-0.0481	-0.8662	0.5862	0.0768	-0.0341	-0.0659	-0.0493	0.4485	0.1559	-0.8164	-0.0008	-0.0417
a_{us}	-0.0459	-0.0650	-0.8255	0.5493	0.0606	-0.0119	-0.0441	-0.0255	0.3870	0.0940	-0.8628	-0.0055	-0.0375
b_{us}	-0.0382	0.3783	0.7032	-0.3288	0.1278	-0.0734	-0.0445	-0.0807	-0.4262	-0.0100	0.3911	0.0040	0.1782
a_g	0.3785	0.0061	0.3050	-0.3280	0.1338	0.0936	0.0718	0.1165	-0.1744	-0.0137	0.4886	0.0323	-0.0360
b_g	-0.6085	0.1017	-0.0873	0.2827	-0.2104	-0.0543	-0.0114	-0.1223	0.2973	0.1560	-0.1337	0.0141	0.0066
$\gamma_{1,g}$	-0.4642	0.1021	-0.1778	0.3605	-0.1962	-0.0708	-0.0396	-0.1230	0.3132	0.0425	-0.1977	0.0071	0.0201

Covariance matrix

• Correlations of PDF fit parameters (III)

	$\alpha_s(\mu_0)$	$\gamma_{1,\Delta}$	$\gamma_{1,us}$	$\gamma_{1,d}$	$\gamma_{2,d}$	A_s	b_s	a_s	<i>ү</i> 3,и	$m_c(m_c)$	γ3,us	$m_b(m_b)$	a_{Δ}
$\alpha_s(\mu_0)$	1.0000	0.0176	-0.0394	-0.0798	0.2357	-0.0018	-0.0982	-0.0075	-0.0291	0.1904	0.0676	0.0562	0.0136
$\gamma_{1,\Delta}$		1.0000	0.1183	-0.0802	0.2640	-0.0427	-0.0489	-0.0550	-0.1595	0.0193	0.0985	0.0069	0.7657
γ1,us			1.0000	-0.6753	-0.0493	-0.0525	0.0158	-0.0445	-0.6039	-0.0656	0.6590	0.0017	0.1487
$\gamma_{1,d}$				1.0000	-0.4041	-0.0213	-0.0513	-0.0366	0.4145	0.0148	-0.3931	-0.0086	-0.2284
$\gamma_{2,d}$					1.0000	0.0308	-0.0016	0.0326	0.1801	0.0276	-0.0510	0.0111	0.1212
A_s						1.0000	0.8570	0.9749	-0.0664	-0.0206	-0.4355	0.0017	-0.0139
b_s							1.0000	0.8730	-0.0894	-0.0706	-0.3708	0.0005	-0.0127
a_s								1.0000	-0.0967	-0.1234	-0.4403	-0.0050	-0.0172
Y 3,u									1.0000	0.0674	-0.2082	0.0153	-0.2378
$m_c(m_c)$										1.0000	-0.0010	0.0505	0.0141
γ _{3,us}											1.0000	0.0083	0.0276
$m_b(m_b)$												1.0000	0.0006
a_{Δ}													1.0000

Pulls

 Comparision to SLAC inclusive DIS cross section data (proton and deuterium target)

Testing higher twist

• Fit of SLAC data without higher twist contributions

Strong coupling constant

Essential facts

- $\alpha_s(M_Z)$ from e^+e^- data high
- $\alpha_s(M_Z)$ from DIS data low
- World average 1992 $\alpha_s(M_Z) = 0.117 \pm 0.004$

			Q			$\Delta \alpha_s($	$M_{ m Z^0})$	order of
	Process	Ref.	[GeV]	$\alpha_s(Q)$	$lpha_s(M_{{ m Z}^0})$	exp.	theor.	perturb.
1	$R_{ au} \; [{ m LEP}]$	[7-10]	1.78	$0.318 {}^{+ \ 0.048}_{- \ 0.039}$	$0.117 {}^{+}_{-} {}^{0.006}_{0.005}$	+ 0.003 - 0.004	+ 0.005 - 0.004	NNLO
2	$R_{ au} \; [{ m world}]$	[2]	1.78	0.32 ± 0.04	$0.118 {}^{+ \ 0.004}_{- \ 0.006}$	-	-	NNLO
3	DIS $[\nu]$	[3]	5.0	$0.193 {}^{+ \ 0.019}_{- \ 0.018}$	$0.111 \stackrel{+ 0.006}{- 0.007}$	+ 0.004 - 0.006	0.004	NLO
4	DIS $[\mu]$	[12]	7.1	0.180 ± 0.014	0.113 ± 0.005	0.003	0.004	NLO
5	$J/\Psi, \Upsilon$ decay	[4]	10.0	$0.167 {}^{+ \ 0.015}_{- \ 0.011}$	$0.113 \ {}^{+ \ 0.007}_{- \ 0.005}$	-	-	NLO
6	$e^+e^-~[\sigma_{had}]$	[14]	34.0	0.163 ± 0.022	0.135 ± 0.015	-	-	NNLO
7	e^+e^- [shapes]	[15]	35.0	0.14 ± 0.02	0.119 ± 0.014	-	-	NLO
	_							
8	$p\bar{p} ightarrow bbX$	[11]	20.0	$0.136 \stackrel{+ 0.025}{- 0.024}$	$0.108 \stackrel{+ 0.015}{- 0.014}$	0.006	+ 0.014 - 0.013	NLO
9	$p \bar{p} ightarrow W$ jets	[13]	80.6	0.123 ± 0.027	0.121 ± 0.026	0.018	0.020	NLO
							1 0 003	
10	$\Gamma(\mathrm{Z}^{_0} ightarrow \mathrm{had.})$	[5]	91.2	0.133 ± 0.012	0.133 ± 0.012	0.012	-0.003	NNLO
11	Z ⁰ ev. shapes			1 0 008				
	ALEPH	[7]	91.2	$0.119 \stackrel{+}{=} \stackrel{0.008}{_{-}0.010}$		-	-	NLO
	DELPHI	[8]	91.2	0.113 ± 0.007		0.002	0.007	NLO
	L3	[9]	91.2	0.118 ± 0.010		-	-	NLO
	OPAL	[10]	91.2	$0.122 \stackrel{+}{=} \stackrel{0.005}{_{-0.005}}$		0.001	- 0.005	NLO
	SLD	[6]	91.2	$0.120 \pm 0.013 \\ 0.013$		0.009	- 0.009	NLO
	Average	[6-10]	91.2		0.119 ± 0.006	0.001	0.006	NLO
	7 0 1							
12	Z ^o ev. shapes							
	ALEPH	[7]	91.2	0.125 ± 0.005		0.002	0.004	resum.
	DELPHI	[8]	91.2	0.122 ± 0.006		0.002	0.006	resum.
		[9]	91.2	0.126 ± 0.009		0.003	U.UU8 + 0.003	resum.
	OPAL		91.2	0.122 ± 0.006		0.001	- 0.006	resum.
	Average	[7-10]	91.2		0.123 ± 0.005	0.001	0.005	resum.

Table 1: Summary of measurements of α_s . For details see text.

$\alpha_s 2012$

Bethke in PDG 2012

World average for $\alpha_s(M_Z)$ based on arithmetic average of (pre-averaged) ٠ $\alpha_s(M_Z)$ values from different methods/processes

Measurements of α_s

• Values of $\alpha_s(M_Z)$ at NNLO from PDF fits

BBG	$0.1134 \ {}^{+ \ 0.0019}_{- \ 0.0021}$	valence analysis, NNLO Blümlein, Böttcher, Guffanti	'06
BB	0.1132 ± 0.0022	valence analysis, NNLO Blümlein, Böttcher	ʻ12
GRS	0.112	valence analysis, NNLO Glück, Reya, Schuck	'06
ABKM	0.1135 ± 0.0014	HQ: FFNS $n_f=3$ Alekhin, Blümlein, Klein, S.M.	' 09
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach Alekhin, Blümlein, Klein, S.M.	' 09
JR	0.1128 ± 0.0010	dynamical approach Jimenez-Delgado, Reya	ʻ13
JR	0.1140 ± 0.0006	including jet data Jimenez-Delgado, Reya	ʻ13
ABM11	0.1134 ± 0.0011	Alekhin, Blümlein, Klein, S.M.	'11
ABM12	0.1133 ± 0.0011	Alekhin, Blümlein, Klein, S.M.	'12
ABM12	0.1132 ± 0.0011	(without jets) Alekhin, Blümlein, Klein, S.M.	'12
MSTW	0.1171 ± 0.0014	Martin, Stirling, Thorne, Watt	· 0 9
NN21	0.1173 ± 0.0007	NNPDF	ʻ '11
CTEQ	0.11590.1162	CTEQ	'13
CTEQ	0.1140	(without jets) CTEQ	ʻ13

Measurements of α_s

• Values of $\alpha_s(M_Z)$ at NNLO from related measurements and lattice

e^+e^- thrust	0.1140 ± 0.0015	Abbate et al.	arXiv:1204.5746
e^+e^- thrust	$0.1131 {}^{+\ 0.0028}_{-\ 0.0022}$	Gehrmann et al.	arXiv:1210.6945
3-jet rate	0.1175 ± 0.0025	Dissertori et al. 2009	arXiv:0910.4283
Z-decay	0.1189 ± 0.0026	BCK 2008/12 (N ³ LO)	arXiv:0801.1821
			arXiv:1201.5804
au decay	0.1212 ± 0.0019	BCK 2008	arXiv:0801.1821
au decay	0.1204 ± 0.0016	Pich 2011	arXiv:1110.0016
au decay	0.1191 ± 0.0022	Boito et al. 2012	arXiv:1203.3146
lattice	0.1205 ± 0.0010	PACS-CS 2009 (2+1 fl.)	arXiv:0906.3906
lattice	0.1184 ± 0.0006	HPQCD 2010	arXiv:1004.4285
lattice	0.1200 ± 0.0014	ETM 2012 (2+1+1 fl.)	arXiv:1201.5770
lattice	0.1156 ± 0.0022	Brambilla et al. 2012 (2+1 fl.)	arXiv:1205.6155
lattice	0.1181 ± 0.0014	JLQCD	arXiv:1002.0371
world average	0.1184 ± 0.0007	(2012)	arXiv:1210.0325

α_s from DIS and PDFs

• Significant spread of $\alpha_s(M_Z)$ values from DIS determinations Alekhin, Blümlein, S.M. '13

Sven-Olaf Moch

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in ABM11 PDF fit Alekhin, Blümlein, S.M. '12

Comparison of α_s determinations

- Differences in α_s values:
 - result from different physics models and analysis procedures
 - target mass corrections (powers of nucleon mass M_N^2/Q^2)
 - higher twist $F_2^{\text{ht}} = F_2 + ht^{(4)}(x)/Q^2 + ht^{(6)}(x)/Q^4 + \dots$
 - error correlations
- Effects for differences between ABM, MSTW and NN21 understood
 - variants of ABM with no higher twist etc. reproduce larger α_s values

	α_s at NNLO	target mass corr.	higher twist	error correl.
ABM11	0.1134 ± 0.0011	yes	yes	yes
NNPDF21	0.1166 ± 0.0008	yes	no	yes
MSTW	0.1171 ± 0.0014	no	no	no

Treatment of heavy-quarks

Light quarks

- Neglect "light quark" masses $m_u, m_d \ll \Lambda_{QCD}$ and $m_s < \Lambda_{QCD}$ in hard scattering process
 - scale-dependent u, d, s, g PDFs from mass singularities

Heavy quarks

- No mass singularities for $m_c, m_b, m_t \gg \Lambda_{QCD}$, no (evolving) PDFs
 - c and b PDFs for $Q \gg m_c, m_b$ generated perturbatively
 - matching of two distinct theories $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales $\longrightarrow n_f + 1$ light flavors at high scales

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p+k$$

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g \, d\theta_{qg} \, \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \quad \text{in dim. reg.} \quad D = 4 - 2\epsilon$$

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p = k$$

$$\frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g d\theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \text{ in dim. reg. } D = 4 - 2\epsilon$$

Parton masses regulate collinear singularity

$$\frac{1}{(p+k)^2 - m_q^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \beta \cos \theta_{qg})}$$
with $\beta = \left(1 - \frac{m_q^2}{E_q^2}\right)^{1/2} < 1$

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p \neq k$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g d\theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \text{ in dim. reg. } D = 4 - 2\epsilon$$

Parton masses regulate collinear singularity

$$\frac{1}{(p+k)^2 - m_q^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \beta \cos \theta_{qg})}$$
with $\beta = \left(1 - \frac{m_q^2}{E_q^2}\right)^{1/2} < 1$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2 - m_q^2} \longrightarrow \alpha_s \frac{1}{\epsilon} \ln(m_q^2) \times (\dots)$$

Treatment of heavy-quarks

Charm structure function

- F_2^c at HERA (assume no "intrinsic charm")
 - $Q \gg m_c$: Fixed flavor-number scheme FFNS u, d, s, g partons and massive charm coeff. fcts.
 - $Q \implies m_c$: Zero-mass variable flavor-number scheme ZM-VFNS terms $m_c/Q \rightarrow 0$, $n_f = 4$ PDFs (matching), $m_c = 0$ coeff. fcts.
 - $Q \gg m_c$: General-mass variable flavor-number scheme GM-VFNS terms $m_c/Q \neq 0$, but quasi-collinear logs $\ln(Q/m_c)$ large $n_f = 4$ PDFs, "interpolating" coeff. fcts. (matching prescriptions)

FFNS

- Perturbative QCD predictions for F_2^c and F_L^c (neutral current)
 - complete NLO predictions Laenen, Riemersma, Smith, van Neerven '92
 - approximate expressions to NNLO
 Laenen, S.M. '98; Alekhin, S.M. '08; Lo Presti, Kawamura, S.M., Vogt '10
 - asymptotic NNLO terms at large $Q^2 \gg m^2$ Bierenbaum, Blümlein, Klein '09

VFNS

 Variable flavor number schemes → matching of two distinct theories Aivazis, Collins, Olness, Tung '94; Thorne, Roberts '98;

Buza, Matiounine, Smith, van Neerven '98

- $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales
- $\longrightarrow n_f + 1$ light flavors at high scales
- Important aspects of variable flavor number schemes
 - mass factorization to be carried out before resummation

 —> mass factorization involves both heavy and light component of structure function
 - matching conditions required through NNLO Chuvakin, Smith, van Neerven '00
- Details of implementation matter in global fits

VFNS implementation

- GM-VFNS implementation using BSMN Buza, Matiounine, Smith, van Neerven '98
- DIS structure function F_2^h for heavy-quark h
 - $F_2^{h,\mathrm{BMSN}}(N_f + 1, x, Q^2) =$
 - $= F_2^{h,\text{exact}}(N_f, x, Q^2) + F_2^{h,\text{ZMVFN}}(N_f + 1, x, Q^2) F_2^{h,\text{asymp}}(N_f, x, Q^2)$
 - $F_2^{h,\text{exact}}$: massive heavy-quark structure function ($m \neq 0$)
 - $F_2^{h,\text{ZMVFN}}$: DIS structure function with zero mass (m = 0)
 - $F_2^{h,\text{asymp}}$: asymptotic expansion of heavy-quark structure function (logarithms $\ln(Q^2/m^2)$)

Heavy quark mass

• Data on F_2^c at HERA has correlation of m_c , $\alpha_S(M_Z)$, gluon PDF

 $\sigma_{c\bar{c}} \sim \alpha_s \, m_c^2 \, g(x)$

- Comparison of measured data with predictions in various VFNS schemes
 - data shows very good sensitivity to value of m_c
 - fit of value of m_c strongly dependent on particular choice of VFNS H1 coll. arxiv:1211.1182

Heavy quark mass

- Significant impact on cross section predictions at LHC
 - e.g., W^+ -production

Quark masses in PDF fits

- Choice of value for heavy-quark masses part of uncertainty
- PDF fits assume pole mass scheme for heavy-quarks
 - numerical values systematically lower than those from PDG (2-loop conversion to pole mass)

[GeV]	PDG	ABKM	GJR	HERAPDF	MSTW	CT10	NNPDF21
m_c	$1.66 {}^{+0.09}_{-0.15}$	1.5 $^{+0.25}_{-0.25}$	1.3	1.4 $^{+0.25}_{-0.05}$	1.3	1.3	1.41
m_b	$4.79~^{+0.19}_{-0.08}$	$4.5~^{+0.5}_{-0.5}$	4.2	$4.75 {}^{+0.25}_{-0.45}$	4.75	4.75	4.75

PDG

• PDG quotes running masses: charm: $m_c(m_c) = 1.27^{+0.07}_{-0.11}$ GeV, bottom: $m_b(m_b) = 4.20^{+0.17}_{-0.07}$ GeV

ABM11

• ABM11 uses running masses: charm: $m_c(m_c) = 1.27^{+0.08}_{-0.08}$ GeV, bottom: $m_b(m_b) = 4.19^{+0.13}_{-0.13}$ GeV

Running quark masses in DIS

Charm structure function

- Running quark masses in DIS
 - improved convergence
 - reduced scale dependence
- Comparison with pole mass scheme

Running quark masses in DIS

Charm structure function

- Running mass
- Direct determination of $m_c(m_c)$ with all correlations Alekhin, Blümlein, Daum, Lipka, S.M. '12 NLO $1.15 \pm 0.04 \text{ (exp.)} {}^{+0.04}_{-0.00}(\text{th.})$ GeV

 $\begin{array}{l} {\sf NNLO}_{\rm approx} \\ 1.24 \pm 0.03 \; ({\rm exp.}) \, {}^{+0.03}_{-0.02} ({\rm th.}) \; {\sf GeV} \end{array}$

- PDG quotes running masses: $m_c(m_c) = 1.27^{+0.07}_{-0.11} \text{ GeV}$
- Implicit $\alpha_s(M_Z)$ dependence in $m_c(m_c)$ determination from QCD sum rules Dehnadi, Hoang, Mateu, Zebarjad '11

Charm mass from HERA

- Determination of $\overline{\mathrm{MS}}$ -mass $m_c(m_c)$ in DIS H1 coll. arxiv:1211.1182
- Very good description of data

LHC measurements

General remarks

- QCD corrections important
 - require theory predictions to NNLO accuracy
- PDF fits with 3-flavors for DIS, 5-flavors for LHC data (matching from 3 to 5-flavors)
 - QCD evolution over large range

Benchmark processes

- Complete NNLO QCD corrections available for
 - W[±] and Z-boson production
 Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02
 - top-quark hadro-production Czakon, Fiedler, Mitov '13
- Jet data from Tevatron and LHC
 - QCD corrections only NLO known
 - possible impact of jet definition and algorithm
 - ongoing effort towards NNLO
 Gehrmann-De Ridder, Gehrmann, Glover, Pires '13

ABM PDFs with LHC data

- DYNNLO 1.3 provides better numerical stability for W-production in central region (\sim 200h) Catani, Cieri, Ferrera, de Florian, Grazzini '09
- FEWZ 3.1 more convenient/stable for estimation of PDF uncertainties (\sim 2d x 24 processors) Li, Petriello '12
- Central values computed with DYNNLO and the PDF errors with FEWZ

ABM PDFs with LHC data

Fit to LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

Good overall agreement with data of CMS '10 and LHCb '12, '13

Sven-Olaf Moch

ABM PDFs with LHC data

Fit to LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

 $d\sigma/d\eta_{\mu}$ (pb) $d\sigma/d\eta_{\mu}$ (pb) dσ/dη_{μμ} (pb) **NNLO ABM11 NNLO ABM12** $Z --> \mu^+ \mu^ \mathbf{W}^{\!+} \operatorname{\textbf{-->}} \mu^{\!+} \nu$ $W \rightarrow \mu \nu$ **P**^μ_T>20 GeV **P**^μ_T>20 GeV **P**^μ_T>20 GeV $2 < \eta_u < 4.5$ η_{μ} η_{μ} $\eta_{\mu\mu}$

LHCb (7 TeV, 37 1/pb)

Good overall agreement with data of CMS '10 and LHCb '12, '13

Benchmarking of ABM PDFs

Experiment	ATLAS '11	CMS '12	LHCb 12	LHCb '12
Final states	$W^+ \to l^+ \nu$	$W^+ \to e^+ \nu$	$W^+ \to \mu^+ \nu$	$Z \rightarrow e^+ e^-$
	$W^- ightarrow l^- u$	$W^- ightarrow e^- \nu$	$W^- o \mu^- u$	
	$Z ightarrow l^+ l^-$			
Luminosity (1/pb)	35	840	37	940
NDP	30	11	10	9
χ^2 (ABM11)	35.7(7.7)	10.6(4.7)	13.1(4.5)	11.3(4.2)
χ^2 (ABM12)	31.5	10.8	15.2	10.3
χ^2 (ABM12)/part.	32.2	10.9	13.0	8.7

- value of χ^2 for Drell-Yan data at the LHC with NNLO ABM11 PDFs (+ one standard deviation of χ^2 equal to $\sqrt{2NDP}$)
- ABM11 benchmarking in arXiv:1211.5142 reports wrong χ^2 values for PDF comparison (NLO MCFM with K-factors, no PDF errors, shifted α_s)

Theory predictions

Drell-Yan process

• W^{\pm} - and Z-boson production

Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02

• theory (scale) + 1σ PDF uncertainty

LHC7	W^+	W^-	W^{\pm}	Ζ
ABM11	$59.53 \substack{+0.38 & +0.88 \\ -0.23 & -0.88}$	$39.97 {}^{+0.28}_{-0.17} {}^{+0.65}_{-0.65}$	$99.51 \ {}^{+0.69}_{-0.41} \ {}^{+1.43}_{-1.43}$	$29.23 \begin{array}{c} +0.18 \\ -0.10 \end{array} \begin{array}{c} +0.42 \\ -0.42 \end{array}$
ABM12	$58.40 \begin{array}{c} +0.38 \\ -0.24 \end{array} \begin{array}{c} +0.70 \\ -0.70 \end{array}$	$39.63 {}^{+0.29}_{-0.18} {}^{+0.45}_{-0.45}$	$98.03 \ {}^{+0.67}_{-0.41} \ {}^{+1.13}_{-1.13}$	$28.79 \ {}^{+0.17}_{-0.11} \ {}^{+0.33}_{-0.33}$

Higgs production

• Gluon-gluon fusion at NNLO

Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

- Higgs boson mass $m_H = 125 \text{ GeV}$
- theory (scale) + 1σ PDF uncertainty

	LHC7	LHC8	LHC13	LHC14
ABM11	$13.23 {}^{+1.35}_{-1.31} {}^{+0.30}_{-0.30}$	$16.99 \ {}^{+1.69}_{-1.63} \ {}^{+0.37}_{-0.37}$	$39.57 \begin{array}{c} +3.60 \\ -3.42 \end{array} \begin{array}{c} +0.77 \\ -0.77 \end{array}$	$44.68 \begin{array}{c} +4.02 \\ -3.78 \end{array} \begin{array}{c} +0.85 \\ -0.85 \end{array}$
ABM12	$13.28 \begin{array}{c} +1.35 \\ -1.32 \end{array} \begin{array}{c} +0.31 \\ -0.31 \end{array}$	$17.05 \ {}^{+1.68}_{-1.64} \ {}^{+0.39}_{-0.39}$	$39.69 {}^{+3.60}_{-3.42} {}^{+0.84}_{-0.84}$	$44.81 {}^{+4.01}_{-3.80} {}^{+0.94}_{-0.94}$

Summary

Parton distributions at the LHC

- Precision determinations of non-perturbative parameters is essential
 - parton content of proton (PDFs)
 - coupling constants $\alpha_s(M_Z)$
 - masses $m_c, m_b, m_t, M_W, m_H, \ldots$
- Precision measurements require careful definition of observable
 - confronting LHC data requires continuous benchmarking
 - source of interesting observations
- Radiative corrections at higher orders in QCD and EW are mandatory
 - NNLO in QCD is conditio sine qua non
 - theory improvements driven by experimental precision
- Lots of challenging tasks for young researchers