Stochastic simulation (Monte Carlo)

Techniques — Basic Concepts and Methods

S. JADACH
IFJ-PAN, Krakéw, Poland

Partly supported by Polish Government grant
Narodowe Centrum Nauki DEC-2011/03/B/ST2/02632

Presented at LHCpheno School, Krakow, PL
September, 2013

More material on http://jadach.web.cern.ch/

S. Jadach Monte Carlo Methods

Abstract (plan of the talk)

| shall talk on elementary methods of Stochastic Simulation,
commonly referred to as Monte Carlo (MC) techniques,

for simulating and/or integrating many-dimensional
distributions, using random numbers:

@ pointing out, that all known SS/MC techniques are a
superposition of a small subset of 3-4 elementary methods,

@ reviewing also briefly “general purpose” SS/MC tools like
FOAM and VEGAS - their algorithms, strength’s and
weaknesses.

Several C++ programs used for numerical illustrations.
Also to be used in the practical exercises.
With CERN library ROOT for histogramming and graphics.

S. Jadach Monte Carlo Methods

Dont be afraid of ROOT:))

Booking histogram:

double r,z,zmin = -1, zmax = 1; int nb=100;
TH1D xHistl= new THID ("Histl","p(z)=(3/8) (1+z)"{2}",nb, zmin, zmax) ;

Filling histogram:
Histl->Fill(z ,WtNorm);
Drawing histogram on the screen:

Histl->DrawCopy () ;

S. Jadach Monte Carlo Methods

README file will guide you in the practical exercise

1. Mapping MC Method

C++ program to be compiled and run in the iterpreter mode by ROOT:
root ./examp_mappingl.C

a) increase no. of MC events and run it again!

b) identify essential part (3 lines) of the MC algorithm

The sam c++ program run in the compile/link/run mode either like that
make —-f Makefile examp_mappingl

or using command in top lines of the code (cat examp_mappingl.cxx)

a) increase no of MC. events

b) play with it! try to invent what may go wrong and modify/spoil acco

2. MC integration, illustration of MC statistical error sigma/sqrt (N)

make —-f Makefile examp_integrl
a) increase no. of trials to 100, 1000 etc

3. Study on the convergence of the MC integration method when incerasi

make -f Makefile examp_integr2
a) change vertical scale to see better convergence at higher N

4. Central Limit Theorem at work!

adach Monte Carlo Methods

In a nutshell, it is numerical method of obtaining EXACT
numerical results involving integration/averaging in many
dimensions (n > 5, n ~ 103, ~ 10°) using random
numbers.

These problems are INSOLVABLE (!) with any other numerical
methods like quadrature (Gauss integration) or analytical methods.

S. Jadach Monte Carlo Methods

Mostly Markovian type...

Many “industrial applications” from the very beginning of MC
era (Los Alamos) are dealing with some Markovian process:

Neutron in the volume of the matter bouncing from atoms with some
elastic cross section, sometimes absorbed, sometimes leaking outside.

Photon coming from the sun, bouncing from atmospheric molecules,
sometimes reaching earth, getting reflected (or absorbed) and finally
reaching to the eye camera of the satelite monitoring ozone levels.

Time evolution of the thousands of financial assets in tens of interacting
stock/money markets with complicated interaction through transactions,
insurances, options, external parameters like natural disaster, stock
closures at different time zones etc.

Calculating hadronic bound state masses in QCD on the time-space
latice, by means of the random walk in the configuration space
(Metropolis algorithm).

Parton shower Monte Carlo’s for LHC!

S. Jadach Monte Carlo Methods

| shall focus on non-Markovian Monte Carlo methods of
simulating or integrating efficiently distribution in a small
(usually fixed) number of dimension n < 100.

However, the modeling a single step forward in the Markovian MC world
(n ~ 108, ~ 108), quite often requires solving exactly the same above problem, in

n < 100 dimensions.

NB. Markovian MC can also be formulated in terms of four
elementary method elaborated in the following.
(Acta Phys.Polon.B39:115,2008, http://arxiv.org/abs/arXiv:0708.1906)

S. Jadach Monte Carlo Methods

Prehistory and history of MC/SS

@ 19th cent. precursor mathematicians: Buffon, Kelvin, others,
but...

@ Modern Monte Carlo is a child of Los Alamos atomic bomb
project (neutron transport), with many contributors (Fermi,
Feynman, Ulam, Von Neuman...)

@ N. Metropolis and S. Ulam, “The Monte Carlo method”, J. Amer.
Stat. Assoc (1949) 44, 247, 337-341.

MC in Particle phys. precursor: I. Kopylov, JETP 35 (1958) 1426.
G.R. Lynch, FAKE, UCRL-10335 (1962), Berkeley.
F. James, FOWL, CERLNLIB W-505, 1966-70, CERN.

C.J. Everet and E.D. Cashwell, “A Monte Carlo Sampler”, Los
Alamos internal report, LA-5081-MS, October 1972.

@ G. Peter Lepage, “A new Algorithm for adaptive Multidimensional
Integration”, Journ. of Comp. Phys. 27 (1978) 192.

S. Jadach Monte Carlo Methods

Other lectures on MC methods

@ Stefan Weinzierl,
“Introduction to Monte Carlo methods” 47 pages (2000)
http://arxiv.org/abs/hep-ph/0006269
@ Henryk Czyz,
“Monte Carlo Methods”, slides of four lectures (2010)
http://czyz.phys.us.edu.pl/czyz/MC_Mainz_1.pdf
@ S. Jadach,
“Practical Guide to Monte Carlo”, 20 pages (1999)
http://arxiv.org/abs/physics/9906056

S. Jadach Monte Carlo Methods

MC simulation # MC integration

MC simulation more difficult than MC integration

The integral value is always there as a byproduct of the MC simulation,
hence MC int. € MC sim.

S. Jadach Monte Carlo Methods

| What is Monte Carlo simulation? |

Large number (list) of the MC events x = (X1, Xz, ..., Xn)
is “fabricated” randomly, independently, exactly
according to predefined probability distribution p(x).

Generated MC events are stored or used to calculate all
kind of averages and distributions.

For example we may obtain 1-dim. distribution of an
“observable” G(x1, X2, ..., Xn):

L~ [d"x 6(g — G(x1, X, .., Xa)) P(X) |
Th|s leads to 1-dim. “histogram” with, say, 100 bins.

S. Jadach Monte Carlo Methods

What is Monte Carlo integration?

The aim is to calculate a single number,
the integral | R = [, p(x)d"x |,
exploiting MC events x;, [=1,2,...N
generated according to some p(x).

The integral estimate is| R = lim & > 2% |

The ratio | w(x) = 2% |is the MC weight of event x.

p(x)
For finite N estatistical error of the integral estimate R is
SR— o — <<w—<w>)2>

N
according to Central L|m|t Theorem, see next slide...
(http://en.wikipedia.org/wiki/Central_limit_theorem)

S. Jadach Monte Carlo Methods

Generating z according to | p(z) = g(+2)?, ze -1,1)|

1. Take cumulative funct. r(z) = [%, p(x)dx = (1/8)(1 + z)® as
an |ntegrat|on variable:

[p(2)dz = [} dr %p(x(r)) = [, dr ,p(x(u)) = [dr1.

2. Take uniformly distributed r € [0, 1] from any RN generator.
3. Map r — z using inverse of r(z): |z = —1 + (8r)"/3|. Et voila!

Double_t RndCthe(TRandom *Rlgen){

// p(2)=(3/8) (142)"2 distribution

ot Double_t r = Rligen->Rndn(0);

o4r Double_t z = -1.0+pow(8.0%r, 1.0/3.0);
oz L return z;

% 08 06 04 02 0 02 04 06 08 3 }

S. Jadach Monte Carlo Methods

Complete program to be run with: "root examp_mapping1.C"

/// root examp_mappingl.C

{ gROOT->Reset();
/// booking Histogram
double r,z,zmin = -1, zmax = 1; int nb=100;
TH1D *Histl = new TH1D{"Histl","p(z)=(3/8)(1+z)~{2} Mapping method
Histl-=GetXaxis()-=SetTitle("z");
/// random number generator object
TRandom3 *RNg3 = new TRandom3();
int nevt=100000;
double WtNorm= (1.0/nevt)/((zmax-zmin)/nb); // dP/dx = (dN/N)
/// loop over MC events
for(int iewv=0; iev<nevt; iev++){
r = RNg3-=Rndm{@);
z = -1.0+pow(8.0*r, 1.8/3.0);
Histl->Fill(z WtNorm) ;
}
/// drawing histogram on screen
TCanvas *cGenerl = new TCanvas({"cGenerl");
cGenerl-=Draw();
cGenerl—)cd[)ﬂ
Histl->SetStats(@);
Histl-=DrawCopy();

/// Mapping method to generate (1+z)~2 distribution in (-1,1) range.

*.nb,zmin, zmax) ;

ELEL] Monte Carlo Methods

Another version of the same: examp_mapping1.cxx

/77 g+ -0 -I/usr/include/root/ -c examp_mappingl.cxx
/11 g++ -0 examp_mappingl.o -L/usr/lib64/root -l6raf3d -o examp_mappingl.exe
/14 - fexamp_mappingl.exe
#include <iomanip.h>
#include <math.h>
#include "TCanvas.h"
include "TH2.h"
#include "TRandom3.h"
#include "TApplication.h"
Double t RndCthe(TRandom *RNgen){
/// generating p(z)=(3/8)(1+z)*2 distribution
Double_t r = RNgen->Rndm(@);
Double_t z = -1.8+pow{ 8.0%r, 1.8/3.8);
return z;
}
void test2(){
Long_t nevt;
nevt=1000;
TRandom3 *RNg3 = new TRandom3();
Double_t x;
Double t xmin
Double_t xmax
Int_t nb=18;
THID *Hist2 = new TH1D("Hist2","(3/8) (1+z)*{2}",nb,xmin,xmax);
Hist2->Sumw2() ;|
Hist2->GetXaxis{)->SetTitle("z");
Hist2->GetXaxis()->CenterTitle();
Hist2->GetXaxis()->SetTitleSize(0.05);
Double_t WtNorm= {1.8/nevt)/{ (xmax-xmin)/nb);//dP
for(int iev=0; iev<nevt; iev++){
% = RndCthe(RNg3);
Hist2->Fill(x ,WtNorm);

¥
Int_t WidPix, HeiPix;
widPix = 500; HeiPix = 500;
TCanvas *cGener2 =
new TCanvas("cGener2","Gener2",420,70,WidPix,HeiPix);
cGener2->setFillColor(10);
cGener2->Drawl() ;
cGener2->cd();
Hist2->Draw("*h");
1
int main{int argc, char **argv){
TApplication theApp("theApp", &argc, argv);
test2()

Numerical illustration of "statistical error” in MC integration

Simple example code: examp_integr1.cxx

p(2) = (14 2)20(1 = 2)0(1 + 2)| | p(2) = 1/2] |w = &&= 2y(2)

z
p(z
Known integral R = [p(z)dz = 8/3 = 2.6666... calculated 1000
times using MC method: | R~ (w) = 1 SN, w(z)) |

Each of 1000 MC runs with N = 10* MC events.
Statistical fuctuations/spread of R is examined:
[Integral R of 10° wt-ed events | [Fsw Hista

Nent = 1000 Nent = le+07
90F Mean = 2.666 F Mean = 2.666
RMS =0.02411 RMS = 2385

80f-
70F
60F 0.8
50

3 0.6f
40F
30
20f-

10F

SRR T Y L ST N Bis S ERTTL RRET P
25 255 26 265 27 275 28 285 29
R

S. Jadach Monte Carlo Methods

Simple example code: examp integri.cxx

&w

en Random *RNgen, uple’
/ (z (3/8)(1+z) 2 dlstrlbutlon, welghted events
Do ble t r = RNgen->Rndm (0
z -1.042.0%r;
Double t p=0.5;
Double_t rho = (l+z)*(l+z);
w = rho/p;

}
void test3 () {

Long_t nevt =10000, ntrial= lOOO

TRandom3 *RNg3 = new TRandom3 (
Double_t R, Rmin = 2.5, Rmax = 2.9, Wmax = 10.
Int_t nb=100;

TH1D *Hist3
TH1D xHistd4

new THID("Hist3",

"Integral R fo
new THID ("Hist4d",

= "MC weight w",
.bouble_t WtNorm=
Double_t z,w;

(1.0/nevt/ntrial)/ ((Wmax) /nb)

for (int itr=0; ltr<ntrlal itr++) {
Double_t sum =
for (int iev=0; 1ev<nevt, iev++) {

GenCthe(RNgB Z,W);
sum
Hist4- >Flll(w,WtNorm);

}

R sum/nevt
Hist3- >Flll(,1.0);

TF1 »fGaus3=new TF1l("fGaus3", "[1l]/sqrt(2.0+p
fGaus3->SetParameter (1,ntrial« ((Rmax—Rmin) /nb

fGaus3->SetParameter (2, 2.666666);

Int_t WidPix = 1000, HeiPix = 500

TCanvas *cGener3 = new TCanvas(“cGener3" "Gen
cGener3->Divide (2, 1, 0.0, 0);
cGener3->Draw () ;

cGener3->cd(1l);

Double_t Ymax = Hist3->GetMaximum(); Hist3->S

Hist3->Draw () ;

/// Gauss funtion on top of histogram

Double_t sigma = 2.385+sqgrt (1.0/nevt);

fGaus3->SetParameter (0, sigma) ;

fGaus3->DrawCopy ("same") ;

cGener3->cd(2);

Hist4->Draw ("h");
int main(int argc, char *xargv) {

TApplication theApp ("theApp",
test3();

&argc, argv);

0
r 10"{4} wt-ed events",nb,Rmin,Rmax) ;
nb, 0.0, Wnax) ;
// dP/dx=(dN/N) / (dx)
%;/[OJ*EXP(* -[2]1)/101)/2)",Rmin, Rmax) ;
er2",440,90, WidPix,HeiPix);

etMaximum(Ymax*1.2);

Example code: examp_integr2.cxx

MC error of integral estimator falls slowly, Ry = ﬁ but firmly!

Contrary to other integration methods (Gauss, adaptive, etc.),

error estimate in MC is extremely RELIABLE and STABLE!
probability |R — Ry| < 20Ry is 96%.

[Convergence of Integral R for 10' events] [Convergence of Integral R for 1¢/ events]
= £
2.9 2-7:_ £+
2.69F
2.8 E \
2.68[
2.7+ 2.67} \N\
k3 : T
26l 266 |
o Ly
2.65F o
2.5 g ‘
2.64F
2'4_””\””\””\HH\HH 263 | Ll
0 5 10 15 20 25 0 5 10 15 20 25

Iny(N) In5(N)
Red band: +5Ry, probab. of |R — Ry| < Ry is 68%.

S. Jadach Monte Carlo Methods

Example code: examp_centr1.cxx

Define pn(x) = [T} dx p(x)d(x — 3V x;), being the sum of
independent trials, where distribution p(x) is characterized by the
mean 1 and variance o.

For N — oo, for ANY input distribution p(x;), with this
and o, pn(x) will always converge to a normal (Gaussian) distribution,
with the average = Ny4 and variance = ov'N

12

1

0.8

0.6

0.4

0.2

0 I 1 M PRI BRI RS .
0 1 2 3 4 5 6 7 8 9 10

lllustration for p(x) being flat distribution in (0,1) range:

S. Jadach Monte Carlo Methods

E 3
1ef
16fF 18F
14F 1.4F 16f
12F 12F 14F
F——— JE 12F
o.af o.sf i
o.8f
o.6f o6f
o0.6E
o.4f o.af 0.4F
0.2F o.2f 0.2F
T R S T S R R L L
0 01 02 03 0.4 05 06 07 08 09 1 0 0.1 02 03 0.4 05 06 07 08 09 1 0 01 02 0.3 0.4 05 06 07 08 09 1

Example code: examp_centr2.cxx

HistL ri+r2)/2 HistZ ri+r2+r3)/3 RES
2 Nent = 1000000 Nent = 1000000 Nent = 1000000
Mean = 0.5 2 Mean =0.4998 2. Mean = 0.4999
18F RMS =0.2887 18] RMS = 02042 RMS =0.1666

ri+r2+. .+r12)/12

£
asf
£
25F
oF
1sf
JE

o.5f

Hista r1+r2+. +r48)/48 Hists. ri+r2+..+r192)/192] Hist6

Nent = 1000000 Nent = 1000000 Nent = 1000000

Mean =0.5001 Mear 05 Mear 05
asE RMS =008331 E RMS _=0.04166 18 RMS _=0.02084

E 16f

1af-

E 12

EN O S0 o 8 o o
T

© 01 02 03 04 05 06 07 08 09 1

0125 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.4 0.45 05 055 0.6

pn(r) = [TIY dxip(r) 6(r — 4(33 r)) |, for N =1,2,3,12,48,192,

for continuous unif
1
p=(n=3 o*=

orm distribution: p(r) =1, re][0,1],

11—2 = 0.288675, 0 = -~ = 0.83333

5

1

Example code: examp_centr2.cxx

(r1+r2+r3)/3 Fists

Nent = 1000000

b Mean = 0.5001
RMS 01666

35F 25F =F

a0f b 20

25

E 1o
20F)
sf 1of 10f-

s

0 01 02 03 0.4 05 06 07 0.8 08 1

Nent = 1000000 Nent = 1000000 Nent = 1000000
Mean =0.5001 WEEm = @k 30f Mean = 0.5
EMS = 008337 RMS = 0.0416 RMS =0.02084

1f oE 25
10f- 1of 20F
of of
€)
of of
b
pa £
T H H i3 H“ T
sy alllh /] P AL i . L L
09T 57 03 04 05 06 07 95 05 1 $25°05 555 04 045 05 0.55 06 0,08 07 6.75 S oas o5 essos

pn(r) = [TIY dxip(r) 6(r — LN 1)) |, for N = 1,2,3,12,48,192,
for discrete non-uniform distribution

p(r) =qd(r—a)+(1-q)é(r—b),

with a, b and q adjusted to get the same:

= (r) = % o2 = 11—2 = 0.288675.

dach Carlo Methods

@ Never trust, never use RNGens provided by compilers,
operating systems etc.

@ Always use two RN generators and for final calculation
switch among them.

@ If possible (speed) use RANLUX of Luscher (1993),
because of very good quality and well understood features,
now included in ROOT!

@ Every 5 years or so there is another interesting new
random number generator on the market,
so far RANLUX is unbeatable.

@ In the present small exercises | am using “Mersenne
Twistor” generator of M. Matsumoto and T. Nishimura
(1998) with bit shuffling, available in ROOT.

S. Jadach Monte Carlo Methods

Citation from LANL e-Print Physics/9906056, by S.J:

“The elementary MC methods like rejection according to weight,
branching (multichannel method) or mapping of variables are so
simple and intuitive that it seems to be not worth to write anything on
them. On the other hand, in the practical MC applications these
methods are often combined in such a complicated and baroque way,
that sometimes one may wonder if the author is really controlling
what he is doing, especially if the documentation is
incomplete/sparse and we lack commonly accepted terminology or
graphical notation for describing MC algorithms.”

Hence in the following we describe THREE elementary MC methods:
1. Rejection according to weight

2. Branching (multichannel method)

3. Mapping of variables,

and how they can be combined.

S. Jadach Monte Carlo Methods

REJECTION METHOD

The most important method providing unweighted events
(MC simulation) according to p(x) is rejection of a subset
of events generated (simulated) primarily according to a
primitive distribution p(©), easier to simulate than p(x).
A MC simulator for primitive p(°)(x) provides (welght 1)
MC events x. The algorithm for simulating p(x) is
@ Generate event x = (x1, Xz, ..., X,) according to
probability p©(x) = p©(x)/R®©)
@ Calculate MC weight w(x) = p(x)/p®(x)
@ Generate uniform random number r € (0, 1)
Q If r'wnax < w accept event, otherwise reject (trash) it
and go back to point 1.

The integral is also available: | R = (w) o R | where

RO = [p©(x)dx" is provided by the underlying MC simulator.
The average (...) ,o is over ALL events generated according to P9,

MC weight w = p/p(o) MUST have finite maximum Wipax:

S. Jadach Monte Carlo Methods

c++ code: examp_reject1.cxx

Intuitively validity of the MC rejection method is obvious:

(1+2)°

-1 -08 -06 04 -02 0 02 04 06 08 1

S. Jadach Monte Carlo Methods

ENTER

p(x)

EXIT

We need graphic representation in order
to visualize: control flow, information flow
and the algorithm structure

This graph clearly visualizes the
CONTROL FLOW in the rejection
method. Black rectangle marked p(x)
underlines that its internal part can be
treated as a “black box” part in another
bigger MC algorithm.

ENTER

|

BLACK
BOX

pPK)
EXIT

Information flow is not yet properly
visualized, see next slide.

S. Jadach Monte Carlo Methods

Previous Event

Rand. Numb. Gen.
e

lll““'

-

INFORMATION FLOW
can be added to the graph. p?(x)

l_

N\

‘\

In the rejection method part of ej\‘i%‘“"

information is irreversibly lost Y
(rejected events, RN’s used for @ @W
rejection) for the outside of the | Tras lyﬁ
black rectangle.

II"”,'”, p(x)

4,
X %,
2,

Next Event ‘
Disk or User Prog.

S. Jadach Monte Carlo Methods

Typical functionality of MC simulator already implemented

class SimuEvent{
// Mini simulator/integrator of (l+z)"2 distribution (rejection method)

private:

long m_Nevent; // No of generated events

long m_Naccep; // No of accepted events

double m_SumWt; // Sum of wt

double m_SumWt2; // Sum of wt"2

double m_WtWax; // Maximum Wt for rejection ENTER
double m_RO; // Primary integral = Volume

public:
SimuEvent (double WtWax) {
// constructor
m_Nevent =0; m_Nacce
m_SumWt .0; m_SumWt
m_WtWax =WtWax; m_RO

}

double rho (double z) {

// integrand function
return (1+z)x(1+z);

vo%d MakeEvent (TRandom *RNgen, double &z) {
// generates single event

RESTART:
Double_t rl = RNgen->Rndm(0);

Double_t r2 = RNgen->Rndm(0) ;

z = -1.0+2.0%rl;
Double_t wt—“ho(m
m_SumiWt t= wt; w>r
m_SumWt2 += wt+wt; no
m_Nevent++; accepted
if(r2 > wt/m_WtWax) goto RESTART; 0 1 Lyes
m_Naccep++; "1 -08-06-04-02 -0 02 04 06 08 1
Yoid GetIntegral (double &R, double &delR) { z
// Provides Integral using average weight p(X
R = m_SumWt/m_Nevent *m_RO;
double sigma2= m_SumWt2/m_Nevent- sqgr (m_SumWt/m_Nevent) ;
delR = sqgrt (sigma2) /sqrt (m_Nevent) »*m_RO; EXIT

}
void GetIntegral2(double &R, double &delR) {
// Provides Integral using no. of accepted events
double p= (1.0xm_Naccep) /m_Nevent;
= m_WtWax*m_RO =*p;
delR = R x1/sqgrt (m_Naccep) xsqrt (1-p) ;

dacl

Green curve is the desired

target distribution p(z).

Red curve represents candidate
for p(V)(z). It has right shape but

it is too small to obey
P > p(2).

Never mind! Multiply red curve

by A = 1.3 and we get
o) > p(z), thatis w < 1.

(Alternatively we could set Wmax = 1.3.)

Is such rescaling always
possible?

target distribution

too small

05F

Gl b b b bow buw be o 15 L
0
-1 -08 -06 -04 -02 -0 02 04 06 08 1

reject

0
-1 -08-06-04-02 -0 02 04 06 08 1
z

Monte Carlo Methods

N
T

Rescaling not always possible! 8
The candidate for 5(V) cannot 3s:
have “blind spots”.

Here, a candidate for 5(') has 25

zero at z = 1, while target p 2
doesn’t.

15
Rescaling will not help! 1

Reject. weight has “infinite tail”,

average weight doesn't exist. 0s

-0.8 -06 -04 -02 -0 02 04 06 08 1

1 ©
[l

S. Jadach Monte Carlo Methods

25

Not only zeros, but first of all
narrow spikes are “fatal”
for the rejection method!

Here rejection can be done but
with HUGE REJECTION rate.

0
-1 -08-06-04-02 -0 02 04 06 08 1

S. Jadach Monte Carlo Methods

Nested rejection often used in order
to gain on CPU time and modularity
of the code:

@ Inner loops may reject more but:
unfinished events are cheaper (in CPU
time), inner weights calculation is faster.

@ Outer-loops wt’s add “fine details” into
distributions; they are CPU time hungry,
hence we profit from the fact that they
reject little events.

@ The inner parts (black boxes) form
self-contained reusable components of a
program library.

© Each loop has to have its own
mechanism for the weight book-keeping,
thus complicated programming.

ENTER

p?(x)

! '

(n-1)

)

f

EXIT

S. Jadach Monte Carlo Methods

(n)

P (x)

BRANCHING METHOD
Alias Multi-Channel Method

ASSUME: p = 2 p(J:x), p’(x) =0

and py = % = ffﬁ“ s Sps=1.
METHOD: Generate component index J
and next generate x according to p(J; x),
the simpler J-th component distr.

Branch index J can be trashed or not. Assume that it is.
PROFITS: Each component p’(x) can be
easier to simulate than the sum.

Better efficiency, smaller variance etc.
LIMITATIONS:

Sub-integrals R, has to be known in advance!
Way out: Combine with rejection method.

S. Jadach Monte Carlo Methods

; p(Ix)

Let us try to simulate:

X
where x = s € (1, 10). = P(IX)
&
2039

A kind of Breit-Wigner “resonance” (mass=v/6, width =1) +
non-resonant “background”, added incoherently (no interference).
Each of component distributions is analytically integrable,

hence 1-dimensional “mapping method” in each branch.

NOTE: 1-dim. mapping provides also analytically the component integrals!

S. Jadach Monte Carlo Methods

// Mini simulator/integrator,

Histllmc
Nent = 100000

0.

0.

0.

Mean = 4.986
RMS = 2.264

!

o NS EEE VI FE T FE S S T N "

3 4 5g6 7 8 9 10

2 branches, Breit-Wigner+B

private:
long m_Nevent; // No of generated events
double m_sl; // minimum
double m_s2; // maximum
double m_R1; // integral 1l-st branch
double m_R2; // integral 2-nd branch
double m_gam; // BW width
double m_s0; // BW center

public:

SimuEven2 (double sl, double s2) {
// constructor
m_Nevent =0;
m_sl=sl;
m_s2=s2;
m_gam=1.0; // BW width
m_s0 =6.0; // BW center
m_Rl=log(m_s2/m_s1);
m_R2= 1/m_gamxatan ((m_s2-m_s0) /m_gam)
-1/m_gam*atan ((m_sl-m_s0) /m_gam) ;

%cid MakeEvent (TRandom *RNgen, double &s) {
// generates single event, 2 branches

Double_t Al,A2;

Double_t rl = RNgen-:)

Double_t r2 = RNgen->R)

Double_t p=m_R1/ (m_F ;

if(r2 < p){ /

S r

/

<
m_;
te

hﬁNevent++;

void GetIntegral (double &R) {
// Provides total Integral
R = m_Rl+m_R2;

MAPPING METHOD

In one and many dimensions

S. Jadach Monte Carlo Methods

A very limited number of 1-dim. distributions p(x) can be generated
out of uniform random number r using simple “mapping” x = H(r).
Two explicit examples:

p(x) = %7 X € (X1, X2)

X; 1
[& = (nx—Inx) fdr, r=lxhx g 1),

0 In Xo—In xq

x =exp(Inx; + r(lnx, —Inxq)) = xq (j—f) € (x1,x2)

p(x) = (X_;”ﬁ, X € (X1, X2)
X2 1

1 __arctan((x2—a)/~)—arctan((xy —a)/v)

J (x—a)2++2 e 2] — Ofdr’

__arctan((x—a)/~)—arctan((x1—a)/~)
r= arctan((xo— a)/t{y) arctan(()é a)/’zy € (O 1)
X = xi +tan (arctan -2 + r[arctan %=4 — arctan 2-2])
Inverting cumulative functlon F(y fy

(a) is rarely feasible analytically;
(b) but one can also invert it numerically.

S. Jadach Monte Carlo Methods

In 1-dim case only a finite number of the distributions can be
generated using mapping within simple elementary functions:-(
1 In"(x)

a ax 1 1 1
X’ Tx X |a7£71~, e, 2+x2) a2 —x2» (a2—x2)1/2> COS(X)

Quite nasty-looking distributions can be generated by mapping:

px) = O x=—In(1+(1—e)"/,
Quite simple distributions cannot be obtained by analyt. mapping:
e~ e xxB=1 ot oix+ ex2 +o3x3, 1+ VX

It is always possible to generate 1-dim distribution by brute force
(memorizing, parametrizing distribution numerically), however one
should know and use analytical mapping, because it is fast and allows
to change parameters in the distribution “in flight”.

NB. For e—** parametrization of the inverse of the cumulative funct. is available:

see Abramowitz & Stegun, eq. 26.2.22

S. Jadach Monte Carlo Methods

An example of clever 2-dim. mapping (Gaussian in radial variables):
fdxdyp(x y fdxdy21 e~ (+y?)/(20%) —

Jo 955 I5" e~ /C70d 2 = [dg [de~" /) = [T dn [o, 1
MAPPING (r1, r2) — (x,y), where r; € (0,1) are uniform r.n’s is:

x(r1,r2) = (—202Inr2)'/? cos(2rry),
y(r1,r2) = (—202Inrx)"/2 sin(27ry).

The Jacobian of the mapping transformation
oY) _ o, 2et(¥+y%)/(20%) —

o(ri,rz) — (XuV)

cancels exactly the distribution!

DREAM:

Jax™ p(x f dr”\g((’,‘)) X)= [dr"1, xi=x(r,..m).

(0,1)
If a general numerlcally fast method for finding such a mapping was
available, we could forget about all other MC methods!!!

S. Jadach Monte Carlo Methods

Sequential mapping in n-
dimensions usually boils
down to brute force numerical
pretabulation.

For instance Backward Evo- P(XpXy5)
lution of Sjostrand in the MC

parton shower. X3

In n-dimensions mapping the distribution of the p(X1X2;X3)

next variable (down the three) involves previously

generated variable as a parameter, as indicated in the

graph. Xn

P(X X5 i Xp)

p(X)

adach Monte Carlo Methods

COMBINING
ELEMENTARY METHODS

Combining Rejection, Branching and Mapping
Combining primitive methods leads quickly to very
complicated scenarios with subtle issues not easy to
explain and document!

You will get a flavour of that...

S. Jadach Monte Carlo Methods

Simple combination of Branching and Rejection

Combining rejection + branching.
Rejection individually in all branches, ijp
or some:

J; R
wo(x) = 2 gy = 5 =

PROOF: no need, simple superposition. X
PROBLEM: p, not known in advance. o
R, known at the end of the MC run - too P (IX)
late! _ W,
Because of that problem this
arrangement is rarely used.

Also opening (temporarily) rejection loop
not easy, requires py — pf,o).

So why not put J-generation inside
rejection loop?

S. Jadach Monte Carlo Methods

Rejection return point before J-generation (see examp_branch2w.cxx)

. . . _ J:x

Rejection weight | w, = % CJ:)

is aware of the J-branch index; —~0)
J is “trashed” after. 0 pJ
PROFIT: Probabilities p* = 7 for
simpler 5(*)’s are possibly known X
analytically!!!

Normalizations controlled by “bared”
probabilities and distributions, and Wmax-

PROOF: Probability density d”p(x) at point x at the exit of the
algorithm (graph) is proportional to product of probability density for
the the J-th branch a”p(” (x) = 5 (J; x)ax" /RS times
probability of accepting event w,(x) = p(J; x)/ﬁ(o)(J; X), averaged

over all branches with probabilities p.

p=2p(IX)

ELEL] Monte Carlo Methods

1-dim. example with two branches (see examp_branch2w.cxx)

Blue and Green areas represent distributions of two branches.

“Brick-walled” part rejected. “Solid-colour” part accepted.
|

1.2f

0.8
0.6F

0.4

0.2f

~

o IS B B I A S R e b
1 2 3 4 5 6 7 8 9 10

S. Jadach Monte Carlo Methods

Rejection decision point after J-trashing point, see examp_branch2ow.cxx

(W) = 0yps | 242 Ui x) dx" = £ 52, [7(d; X) U(J; x) ax"
(B) ©

P

X | p(3x)

e

A
&

Zp(x)

w

L 2 p(Ex)
wo(x) = E4
we)) = [35 p(J: X)

<<wé>>:ﬁf%d '

S. Jadach Monte Carlo Methods

Rejection decision point after J-trashing point, see examp_branch2ow.cxx

Rejection (of brick-walled) can be executed either

(B) separately for each branch/layer (left) or

(C) at once for both branch/layer (right), weight J-averaged.
Weight distribution in (C) nicer (no blind spots); costs more CPU time.

S. Jadach Monte Carlo Methods

Method of Kleiss&Pittau. A step towards self-adapting MCs.

In branching+rejection with “opened rejection
loop” target dist. is p(x). Generated primarily: (C3)
p(x) =3 p(J; x) (mapping). Normalization
“anchor”: R=3Y",R; =", [A(J; x)dx™.
Integral is R = R((w)), where the average is

over branches and over integration domain. The C]j
MC erroris 6R = 7= = %\/ ((w2)) — ((w))? o)

2
“MC inefficiency” is iE = N +1 =)
() ;W>n I:Xj pLIX)

an f ZJP iX) X \\\\\u
. J
Get the smallest inefficiency /E @
by manipulating relative overall

One finds: iE = s

normalizations of the branch 2pWIx)
distributions 5(J; x) — A\yp(J; x). W
PROCEDURE: Start from Ay = 1, then

20(Kx) R l p(x)
Wk = ((w B X))) is calculated from the
trial MC run and for the next trial run w = fog)(%)

’ substitute Ay — A\y\/ W, ‘

S. Jadach Monte Carlo Methods

GENERAL PURPOSE MC
METHODS AND TOOLS

VEGAS and FOAM

@ Both are General Purpose MC simulators/integrators
with automatic self-adapting to user-provided distribution.

@ Both are for MC problems in n < 100 dimensions.

@ Primary aim of FOAM is MC/Stochastic SIMULATION
(Weight=1 events)

@ Primary aim of VEGAS is MC INTEGRATION;
but was customized to provide MC events (un)weighted.

@ FOAM is adapting system of hyper-cells to shape of distr.

@ VEGAS is adapting division of each of the variables into
unequal intervals to user distr.

@ FOAM is included in ROOT, VEGAS in GNU libraries.

S. Jadach Monte Carlo Methods

SELECTED REFERENCES

| VEGAS and the like |

@ G.P Lepage, J. Comput. Phys. 27, 195 (1978).

@ T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond
factorization, Comput.Phys.Commun. 120 (1999)13, eprint:
hep-ph/9806432.

@ S. Kawabata, Comp. Phys. Commun. 88, 309 (1995).

@ Earlier unpublished trials in 80’s by S. Kawabata, R. Kleiss and S.
Jadach.

@ G. |. Manankova, A. F. Tatarchenko, and F. V. Tkachev, MILXy way: How
much better than VEGAS can one integrate in many dimensions?,
1995, a Contribution to AINHEP-95, Pisa, ltaly, Apr 3-8, 1995 (extended
version).

@ E. de Doncker and A. Gupta, “Multivariate Integration on Hypercubic
and Mesh Networks”, Parallel Computing 24 (1998) 1223.

@ S. Jadach, Comput.Phys.Commun. 130, 244 (2000); and
“Foam: A general purpose cellular Monte Carlo event generator”
e-Print: physics/0203033.

S. Jadach Monte Carlo Methods

The integrand function in n dimensions is assumed to be fairly well
approximated by a product of functions, p(x) = H,’-’:1 pi(Xi)

each one depending just on one integration variable.

The integration range of each variable is divided into k bins of
unequal width, with the binning (bin sizes) different for each variable.
The entire integration domain, that is an n-dimensional rectangle, is
divided into k" sub-rectangles.

The whole structure is explored by means of the MC generation of
random points within each sub-rectangle, with a uniform distribution.
Exploration repeated iteratively.

The binning is adjusted iteratively, such that the the ratio of the
dispersion to the average weight is minimized — variance reduction.
The “driving function” which controls binning in each direction is the

density ’;((’Q;. The grid evolves iteratively such that projection of this
function on each direction is as flat as possible. In each iteration bzins
are first subdivided, integral and projections onto each axis of £)

o(x
p(x)
are calculated and the new binning is established.

S. Jadach Monte Carlo Methods

VEGAS is FANTASTIC but...

e For a given p(X) there is certain limiting value of the
MC Simulation efficiency 5/~ which cannot be
overcame by further enlarging the grid and/or number
of the MC trials.

e The above failure and general inefficiency occurs for
integrands badly approximated by the product
p(x) = [T pi(xi)-

(This limitation not present in FOAM).

S. Jadach Monte Carlo Methods

for a “non-factorisable” 2-dim. distribution

True distr.

@ FOAM operates in “two-stroke” mode:

e Exploration phase; building system of cells adapted to the
shape of the user-provided distribution

e Generation WT=1 MC event series (optionally weighted)
exactly according to user distribution.
The integral value is also calculated.

@ In exploration cells are divided step by step into 2 daughter cells,
such that projected final MC efficiency is minimized

@ The choice of the division wall (position and direction) is done
with help of a short MC exploratory MC run within the cell.

@ Creating system of cells may take time, so there is a possibility
to dump it into a disk file and reuse many times (persistency).

S. Jadach Monte Carlo Methods

with the growing number of cells= 10, 70, 250, 2500.

S. Jadach Monte Carlo Methods

with the growing number of cells=200, 2000, 20k

] Minimization of maximum weight, SIMULATION mode\

S. Jadach Monte Carlo Methods

is the most complicated part of FOAM algorithm

For each cell and each edge results of MC exploratory run are examined to
find the best edge and the best point of the division into 2 daughter cells.

1.00 Old o @ /(x) is from MC exploratory run
New]|

p(x) @ Old majorizing p’ for parent cell
075 - 4 @ New p’ for two daughter cells

OLD I @ OLD Ry all area above red
050k loss 1 line, for the parent cell

@ New Rjss between red line and
New p’, for 2 daughters
05 N‘“\” — @ Division point * is chosen to
ww MINIMIZE the INEFFICIENCY
0.00 * ‘ functional Rioss!
0.25 0.50 T 0.75 1.00

S. Jadach Monte Carlo Methods

Tabulated Efficiency = (AverageWeight)/(MaximumWeight)

For non-factorisable distributions FOAM is superior.

| Functions at 2-dimens. | Foam 1.01 || Simpl. | H-Rect. | VEGAS |

pa(x) (diagonal ridge)
pp(X) (circular ridge)
pe(X) (edge of square)

| Functions at 3-dimens. | Foam 1.01 || Simpl. | H-Rect. | VEGAS |

pa(x) (thin diagonal)
pp(X) (thin sphere)
pe(x) (surface of cube)

0.93 0.93 0.86 0.03
0.82 0.82 0.82 0.16
0.57 1.00 1.00 0.53
0.67 0.74 0.66 0.002
0.36 0.47 0.53 0.11
0.37 0.95 1.00 0.30

Results from Foam/MCell are for 5000 cells (2500 active cells) and

cell exploration with 200 MC events/cell

S. Jadach Monte Carlo Methods

Asking whether FOAM or VEGAS is
better is pointless

The answer depends upon the type of the
user-distribution and the type of the problem

S. Jadach Monte Carlo Methods

e Monte Carlo stochastic methods are great
tools for all multi-dimensional problems!

e They are easy to learn and use.

e But sophisticated MC algorithms are not
easy to construct and document.

e General purpose MC tools like FOAM and
VEGAS make our live easier!

S. Jadach Monte Carlo Methods

