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Abstract (plan of the talk)

I shall talk on elementary methods of Stochastic Simulation,
commonly referred to as Monte Carlo (MC) techniques,

for simulating and/or integrating many-dimensional
distributions, using random numbers:

pointing out, that all known SS/MC techniques are a
superposition of a small subset of 3-4 elementary methods,
reviewing also briefly “general purpose” SS/MC tools like
FOAM and VEGAS – their algorithms, strength’s and
weaknesses.

Several C++ programs used for numerical illustrations.
Also to be used in the practical exercises.
With CERN library ROOT for histogramming and graphics.
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Dont be afraid of ROOT:))

Booking histogram:

double r,z,zmin = -1, zmax = 1; int nb=100;
TH1D *Hist1= new TH1D("Hist1","p(z)=(3/8)(1+z)^{2}",nb,zmin,zmax);

Filling histogram:

Hist1->Fill(z ,WtNorm);

Drawing histogram on the screen:

Hist1->DrawCopy();

S. Jadach Monte Carlo Methods



university-logo

README file will guide you in the practical exercises:
1. Mapping MC Method

-----------------
C++ program to be compiled and run in the iterpreter mode by ROOT:

root ./examp_mapping1.C
a) increase no. of MC events and run it again!
b) identify essential part (3 lines) of the MC algorithm
The sam c++ program run in the compile/link/run mode either like that

make -f Makefile examp_mapping1
or using command in top lines of the code (cat examp_mapping1.cxx)
a) increase no of MC. events
b) play with it! try to invent what may go wrong and modify/spoil accordingly:)

2. MC integration, illustration of MC statistical error sigma/sqrt(N)
------------------------------------------------------------------
make -f Makefile examp_integr1

a) increase no. of trials to 100, 1000 etc

3. Study on the convergence of the MC integration method when incerasing N
-----------------------------------------------------
make -f Makefile examp_integr2

a) change vertical scale to see better convergence at higher N

4. Central Limit Theorem at work!
------------------------------
make -f Makefile examp_centr1

a) increase gradually no. of MC events from 10^3 to 10^6

5. Central Limit Theorem illustration again
----------------------------------------

the same as above except rescaling x-axis:)
a) play with No. of MC events
b) replace flat distribution with two Dirac delta’s (already in the code)

make -f Makefile examp_centr2

S. Jadach Monte Carlo Methods
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What is Monte Carlo, stochastic
simulation/integration method?
In a nutshell...

In a nutshell, it is numerical method of obtaining EXACT
numerical results involving integration/averaging in many
dimensions (n > 5, n ∼ 103,∼ 106) using random
numbers.

These problems are INSOLVABLE (!) with any other numerical
methods like quadrature (Gauss integration) or analytical methods.

S. Jadach Monte Carlo Methods
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Extremely wide variety of practical applications!
Mostly Markovian type...

Many “industrial applications” from the very beginning of MC
era (Los Alamos) are dealing with some Markovian process:

Neutron in the volume of the matter bouncing from atoms with some
elastic cross section, sometimes absorbed, sometimes leaking outside.

Photon coming from the sun, bouncing from atmospheric molecules,
sometimes reaching earth, getting reflected (or absorbed) and finally
reaching to the eye camera of the satelite monitoring ozone levels.

Time evolution of the thousands of financial assets in tens of interacting
stock/money markets with complicated interaction through transactions,
insurances, options, external parameters like natural disaster, stock
closures at different time zones etc.

Calculating hadronic bound state masses in QCD on the time-space
latice, by means of the random walk in the configuration space
(Metropolis algorithm).

Parton shower Monte Carlo’s for LHC!

S. Jadach Monte Carlo Methods
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MY LIMITED SCOPE:

I shall focus on non-Markovian Monte Carlo methods of
simulating or integrating efficiently distribution in a small
(usually fixed) number of dimension n < 100.

However, the modeling a single step forward in the Markovian MC world

(n ∼ 103,∼ 106), quite often requires solving exactly the same above problem, in

n < 100 dimensions.

NB. Markovian MC can also be formulated in terms of four
elementary method elaborated in the following.
(Acta Phys.Polon.B39:115,2008, http://arxiv.org/abs/arXiv:0708.1906)

S. Jadach Monte Carlo Methods
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Prehistory and history of MC/SS

19th cent. precursor mathematicians: Buffon, Kelvin, others,
but...

Modern Monte Carlo is a child of Los Alamos atomic bomb
project (neutron transport), with many contributors (Fermi,
Feynman, Ulam, Von Neuman...)

N. Metropolis and S. Ulam, “The Monte Carlo method”, J. Amer.
Stat. Assoc (1949) 44, 247, 337-341.

MC in Particle phys. precursor: I. Kopylov, JETP 35 (1958) 1426.

G.R. Lynch, FAKE, UCRL-10335 (1962), Berkeley.

F. James, FOWL, CERLNLIB W-505, 1966-70, CERN.

C.J. Everet and E.D. Cashwell, “A Monte Carlo Sampler”, Los
Alamos internal report, LA-5081-MS, October 1972.

G. Peter Lepage, “A new Algorithm for adaptive Multidimensional
Integration”, Journ. of Comp. Phys. 27 (1978) 192.
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Other lectures on MC methods

Stefan Weinzierl,
“Introduction to Monte Carlo methods” 47 pages (2000)
http://arxiv.org/abs/hep-ph/0006269

Henryk Czyż,
“Monte Carlo Methods”, slides of four lectures (2010)
http://czyz.phys.us.edu.pl/czyz/MC_Mainz_1.pdf

S. Jadach,
“Practical Guide to Monte Carlo”, 20 pages (1999)
http://arxiv.org/abs/physics/9906056
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MC Simulation versus MC Integration

MC simulation 6= MC integration

MC simulation more difficult than MC integration

The integral value is always there as a byproduct of the MC simulation,
hence MC int. ∈ MC sim.

S. Jadach Monte Carlo Methods
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MC Simulation versus MC Integration

What is Monte Carlo simulation?

Large number (list) of the MC events x = (x1, x2, ..., xn)
is “fabricated” randomly, independently, exactly
according to predefined probability distribution p(x).

Generated MC events are stored or used to calculate all
kind of averages and distributions.
For example we may obtain 1-dim. distribution of an
“observable” G(x1, x2, ..., xn):

dp
dg =

∫
dnx δ

(
g −G(x1, x2, ..., xn)

)
p(x) .

This leads to 1-dim. “histogram” with, say, 100 bins.

S. Jadach Monte Carlo Methods
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MC Simulation versus MC Integration

What is Monte Carlo integration?

The aim is to calculate a single number,
the integral R =

∫
Ω

ρ(x)dnx ,
exploiting MC events xI , I = 1, 2, ...N
generated according to some p(x).

The integral estimate is R = lim
N→∞

1
N

N∑
I=1

ρ(xI)
p(xI)

.

The ratio w(x) = ρ(x)
p(x)

is the MC weight of event x .

For finite N estatistical error of the integral estimate R is

δR = σ√
N

=

√
〈 (w−〈w〉)2 〉√

N
,

according to Central Limit Theorem, see next slide...
(http://en.wikipedia.org/wiki/Central_limit_theorem)

S. Jadach Monte Carlo Methods
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Simple example of MC SIMULATION (mapping)

Generating z according to p(z) = 3
8(1 + z)2, z ∈ −1, 1) .

1. Take cumulative funct. r(z) =
∫ z
−1 p(x)dx = (1/8)(1 + z)3 as

an integration variable:∫
p(z)dz =

∫ 1
0 dr dx

dr p(x(r)) =
∫ 1

0 dr 1
dr
dx

p(x(u)) =
∫ 1

0 dr 1.

2. Take uniformly distributed r ∈ [0, 1] from any RN generator.

3. Map r → z using inverse of r(z): z = −1 + (8r)1/3 . Et voilà!

z
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Double_t RndCthe(TRandom *RNgen ){

// p(z)=(3/8)(1+z)^2 distribution

Double_t r = RNgen->Rndm(0);

Double_t z = -1.0+pow( 8.0*r, 1.0/3.0 );

return z;

}

S. Jadach Monte Carlo Methods
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Simple example of MC SIMULATION (mapping)
Complete program to be run with: "root examp_mapping1.C"

S. Jadach Monte Carlo Methods
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Another version of the same: examp_mapping1.cxx

S. Jadach Monte Carlo Methods
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Numerical illustration of "statistical error" in MC integration
Simple example code: examp_integr1.cxx

ρ(z) = (1 + z)2θ(1− z)θ(1 + z) p(z) = 1/2 w = ρ(z)
p(z) = 2ρ(z)

Known integral R =
∫

ρ(z)dz = 8/3 = 2.6666... calculated 1000

times using MC method: R ' 〈w〉 = 1
N

∑N
I=1 w(zI) .

Each of 1000 MC runs with N = 104 MC events.
Statistical fuctuations/spread of R is examined:

R
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Simple example code: examp_integr1.cxx
void GenCthe(TRandom *RNgen, Double_t &z, Double_t &w){
/// p(z)=(3/8)(1+z)^2 distribution, weighted events

Double_t r = RNgen->Rndm(0);
z = -1.0+2.0*r;
Double_t p = 0.5;
Double_t rho = (1+z)*(1+z);
w = rho/p;

}
void test3(){

Long_t nevt =10000, ntrial=1000;
TRandom3 *RNg3 = new TRandom3();
Double_t R, Rmin = 2.5, Rmax = 2.9, Wmax = 10.0;
Int_t nb=100;
TH1D *Hist3 = new TH1D("Hist3","Integral R for 10^{4} wt-ed events",nb,Rmin,Rmax);
TH1D *Hist4 = new TH1D("Hist4","MC weight w", nb,0.0,Wmax);

...
Double_t WtNorm= (1.0/nevt/ntrial)/((Wmax)/nb); // dP/dx=(dN/N)/(dx)
Double_t z,w;
for(int itr=0; itr<ntrial; itr++){

Double_t sum = 0;
for(int iev=0; iev<nevt; iev++){

GenCthe(RNg3,z,w);
sum += w;
Hist4->Fill(w,WtNorm);

}
R = sum/nevt;
Hist3->Fill(R ,1.0);

}
TF1 *fGaus3=new TF1("fGaus3", "[1]/sqrt(2.0*pi)/[0]*exp(-sq((x-[2])/[0])/2)",Rmin,Rmax);
fGaus3->SetParameter(1,ntrial*((Rmax-Rmin)/nb));
fGaus3->SetParameter(2, 2.666666);
Int_t WidPix = 1000, HeiPix = 500;
TCanvas *cGener3 = new TCanvas("cGener3","Gener2",440,90, WidPix,HeiPix);
cGener3->Divide(2, 1, 0.0, 0);
cGener3->Draw();
cGener3->cd(1);
Double_t Ymax = Hist3->GetMaximum(); Hist3->SetMaximum(Ymax*1.2);
Hist3->Draw();
/// Gauss funtion on top of histogram
Double_t sigma = 2.385*sqrt(1.0/nevt);
fGaus3->SetParameter(0,sigma);
fGaus3->DrawCopy("same");
cGener3->cd(2);
Hist4->Draw("h");

}
int main(int argc, char **argv){

TApplication theApp("theApp", &argc, argv);
test3();
theApp.Run();

} S. Jadach Monte Carlo Methods
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Convergence study in MC integration
Example code: examp_integr2.cxx

MC error of integral estimator falls slowly, δRN = σ√
N

, but firmly!
Contrary to other integration methods (Gauss, adaptive, etc.),
error estimate in MC is extremely RELIABLE and STABLE!
Green band: probability |R − RN | < 2δRN is 96%.
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Red band: ±δRN , probab. of |R − RN | < δRN is 68%.
S. Jadach Monte Carlo Methods
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Central Limit Theorem (Law of big numbers)
Example code: examp_centr1.cxx

Define pN(x) =
∫ ∏N

1 dxi p(xi)δ(x −
∑N

1 xi), being the sum of
independent trials, where distribution p(x) is characterized by the
mean µ1 and variance σ.
Theorem: For N →∞, for ANY input distribution p(xi), with this µ1

and σ, pN(x) will always converge to a normal (Gaussian) distribution,
with the average = Nµ1 and variance = σ

√
N
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Illustration for p(x) being flat distribution in (0,1) range.
S. Jadach Monte Carlo Methods
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Central Limit Theorem – Numerical illustration
Example code: examp_centr2.cxx
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pN(r) =
∫ ∏N

1 dxip(ri) δ(r − 1
N (

∑N
1 ri)) , for N = 1, 2, 3, 12, 48, 192,

for continuous uniform distribution: p(r) = 1, r ∈ [0, 1],
µ1 = 〈r〉 = 1

2 , σ2 = 1
12 = 0.288675, σ = 1√

12
= 0.83333
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Central Limit Theorem works for ANY p(x) !!!
Example code: examp_centr2.cxx
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pN(r) =
∫ ∏N

1 dxip(ri) δ(r − 1
N (

∑N
1 ri)) , for N = 1, 2, 3, 12, 48, 192,

for discrete non-uniform distribution
p(r) = qδ(r − a) + (1− q)δ(r − b),
with a, b and q adjusted to get the same:
µ1 = 〈r〉 = 1

2 , σ2 = 1
12 = 0.288675.
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Pseudo-RN generators: Practical hints

Never trust, never use RNGens provided by compilers,
operating systems etc.
Always use two RN generators and for final calculation
switch among them.
If possible (speed) use RANLUX of Luscher (1993),
because of very good quality and well understood features,
now included in ROOT!
Every 5 years or so there is another interesting new
random number generator on the market,
so far RANLUX is unbeatable.
In the present small exercises I am using “Mersenne
Twistor” generator of M. Matsumoto and T. Nishimura
(1998) with bit shuffling, available in ROOT.

S. Jadach Monte Carlo Methods
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Why elementary MC methods are important?

Citation from LANL e-Print Physics/9906056, by S.J:
“The elementary MC methods like rejection according to weight,
branching (multichannel method) or mapping of variables are so
simple and intuitive that it seems to be not worth to write anything on
them. On the other hand, in the practical MC applications these
methods are often combined in such a complicated and baroque way,
that sometimes one may wonder if the author is really controlling
what he is doing, especially if the documentation is
incomplete/sparse and we lack commonly accepted terminology or
graphical notation for describing MC algorithms.”

Hence in the following we describe THREE elementary MC methods:
1. Rejection according to weight
2. Branching (multichannel method)
3. Mapping of variables,
and how they can be combined.

S. Jadach Monte Carlo Methods
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REJECTION METHOD

REJECTION METHOD

S. Jadach Monte Carlo Methods
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Rejection MC method

The most important method providing unweighted events
(MC simulation) according to ρ(x) is rejection of a subset
of events generated (simulated) primarily according to a
primitive distribution ρ(0), easier to simulate than ρ(x).
A MC simulator for primitive ρ(0)(x) provides (weight=1)
MC events x . The algorithm for simulating ρ(x) is:

1 Generate event x = (x1, x2, ..., xn) according to
probability p(0)(x) = ρ(0)(x)/R(0)

2 Calculate MC weight w(x) = ρ(x)/ρ(0)(x)
3 Generate uniform random number r ∈ (0, 1)
4 If rwmax < w accept event, otherwise reject (trash) it

and go back to point 1.
The integral is also available: R = 〈w〉ρ(0)R(0) , where

R(0) =
∫

ρ(0)(x)dxn is provided by the underlying MC simulator.
The average 〈...〉ρ(0) is over ALL events generated according to ρ(0).
MC weight w = ρ/ρ(0) MUST have finite maximum wmax:

S. Jadach Monte Carlo Methods
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Rejection method: Simple illustration
c++ code: examp_reject1.cxx

Intuitively validity of the MC rejection method is obvious:
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Rejection method: Graphic representation

( x )(0)ρ
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We need graphic representation in order
to visualize: control flow, information flow
and the algorithm structure
This graph clearly visualizes the
CONTROL FLOW in the rejection
method. Black rectangle marked ρ(x)
underlines that its internal part can be
treated as a “black box” part in another
bigger MC algorithm.
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BOX
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Information flow is not yet properly
visualized, see next slide.
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university-logo

Rejection method: Information flow

INFORMATION FLOW
can be added to the graph.

In the rejection method part of
information is irreversibly lost
(rejected events, RN’s used for
rejection) for the outside of the
black rectangle.
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Rejection method: C++ complete example
Typical functionality of MC simulator already implemented
class SimuEvent{
// Mini simulator/integrator of (1+z)^2 distribution (rejection method)
private:
long m_Nevent; // No of generated events
long m_Naccep; // No of accepted events
double m_SumWt; // Sum of wt
double m_SumWt2; // Sum of wt^2
double m_WtWax; // Maximum Wt for rejection
double m_R0; // Primary integral = Volume
public:
SimuEvent(double WtWax){
// constructor

m_Nevent =0; m_Naccep =0;
m_SumWt =0.0; m_SumWt2 =0.0;
m_WtWax =WtWax; m_R0 =2.0;

}
double rho(double z){
// integrand function

return (1+z)*(1+z);
}

void MakeEvent(TRandom *RNgen, double &z){
// generates single event
RESTART:
Double_t r1 = RNgen->Rndm(0);
Double_t r2 = RNgen->Rndm(0);
z = -1.0+2.0*r1;
Double_t wt=rho(z);
m_SumWt += wt;
m_SumWt2 += wt*wt;
m_Nevent++;
if( r2 > wt/m_WtWax ) goto RESTART;

m_Naccep++;
}void GetIntegral(double &R, double &delR){
// Provides Integral using average weight

R = m_SumWt/m_Nevent *m_R0;
double sigma2= m_SumWt2/m_Nevent- sqr(m_SumWt/m_Nevent);
delR = sqrt(sigma2)/sqrt(m_Nevent) *m_R0;

}
void GetIntegral2(double &R, double &delR){
// Provides Integral using no. of accepted events

double p= (1.0*m_Naccep)/m_Nevent;
R = m_WtWax*m_R0 *p;
delR = R *1/sqrt(m_Naccep)*sqrt(1-p);

}
};
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The problem of “maximum weight”

Green curve is the desired
target distribution ρ(z).
Red curve represents candidate
for ρ̄(1)(z). It has right shape but
it is too small to obey
ρ(1) ≥ ρ(z).

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

target distribution

too small

Never mind! Multiply red curve
by λ = 1.3 and we get
ρ̄(1) ≥ ρ(z), that is w̄ ≤ 1.
(Alternatively we could set wmax = 1.3.)
Is such rescaling always
possible?
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“Blind spots” in the rejection method

Rescaling not always possible!
The candidate for ρ̄(1) cannot
have “blind spots”.

Here, a candidate for ρ̄(1) has
zero at z = 1, while target ρ
doesn’t.

Rescaling will not help!
Reject. weight has “infinite tail”,
average weight doesn’t exist.
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Stil another limitations of the rejection method

Not only zeros, but first of all
narrow spikes are “fatal”
for the rejection method!

Here rejection can be done but
with HUGE REJECTION rate.
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Multiple (nested) rejections

Nested rejection often used in order
to gain on CPU time and modularity
of the code:
⊕ Inner loops may reject more but:
unfinished events are cheaper (in CPU
time), inner weights calculation is faster.
⊕ Outer-loops wt’s add “fine details” into
distributions; they are CPU time hungry,
hence we profit from the fact that they
reject little events.
⊕ The inner parts (black boxes) form
self-contained reusable components of a
program library.
	 Each loop has to have its own
mechanism for the weight book-keeping,
thus complicated programming.

ρ(0)(x)

ρ

w
(n)

EXIT

ENTER

w(1)

(1)
(x)

(n−1)
w

(x)ρ
(n−1)

(n)ρ (x)
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BRANCHING METHOD

BRANCHING METHOD
Alias Multi-Channel Method
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Branching (multi-channel) method

ASSUME: ρ =
N∑

J=1
ρ(J; x), ρJ(x) ≥ 0

and pJ = RJ
R =

R
ρ(J;x) dxnR
ρ(x) dxn ,

∑
J

pJ = 1.

METHOD: Generate component index J
and next generate x according to ρ(J; x),
the simpler J-th component distr.
Branch index J can be trashed or not. Assume that it is.

PROFITS: Each component ρJ(x) can be
easier to simulate than the sum.
Better efficiency, smaller variance etc.
LIMITATIONS:
Sub-integrals RJ has to be known in advance!
Way out: Combine with rejection method.

J

J

x

p

Σ
J

J

ρ(J;x)

ρ(J;x)
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Branching method: Simple example 1

Let us try to simulate:
ρ(x) = 1

x + 1
(x−6)2+1

where x = s ∈ (1, 10).
J

J

x

p

Σ
J

J

ρ(J;x)

ρ(J;x)
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0
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0.4
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1

1.2

(1;x)ρ

(2;x)ρ

x

A kind of Breit-Wigner “resonance” (mass=
√

6, width =1) +
non-resonant “background”, added incoherently (no interference).
Each of component distributions is analytically integrable,
hence 1-dimensional “mapping method” in each branch.
NOTE: 1-dim. mapping provides also analytically the component integrals!
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Branching method: complete example and MC result
c++ code: examp_branch2.cxx
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Nent = 100000 
Mean  =  4.986
RMS   =  2.264

Hist11mc
Nent = 100000 
Mean  =  4.986
RMS   =  2.264

s

(s)ρ

// Mini simulator/integrator, 2 branches, Breit-Wigner+Bacground
private:
long m_Nevent; // No of generated events
double m_s1; // minimum
double m_s2; // maximum
double m_R1; // integral 1-st branch
double m_R2; // integral 2-nd branch
double m_gam; // BW width
double m_s0; // BW center
public:
SimuEven2(double s1, double s2 ){
// constructor

m_Nevent =0;
m_s1=s1;
m_s2=s2;
m_gam=1.0; // BW width
m_s0 =6.0; // BW center
m_R1=log(m_s2/m_s1);
m_R2= 1/m_gam*atan((m_s2-m_s0)/m_gam)

-1/m_gam*atan((m_s1-m_s0)/m_gam);
}
void MakeEvent(TRandom *RNgen, double &s){
// generates single event, 2 branches

Double_t A1,A2;
Double_t r1 = RNgen->Rndm(0);
Double_t r2 = RNgen->Rndm(0);
Double_t p=m_R1/(m_R1+m_R2);
if(r2 < p){ // 1-st branch

s = m_s1*pow((m_s2/m_s1),r1);
}else{ // 2-nd branch

A1 = 1/m_gam*atan((m_s1-m_s0)/m_gam);
A2 = 1/m_gam*atan((m_s2-m_s0)/m_gam);
s = m_s0+m_gam*m_gam*tan(A1+(A2-A1)*r1);

}
m_Nevent++;

}
void GetIntegral(double &R){
// Provides total Integral

R = m_R1+m_R2;
}

};
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MAPPING METHOD

MAPPING METHOD
In one and many dimensions

S. Jadach Monte Carlo Methods



university-logo

Mapping, 1-dim case, 2 examples

A very limited number of 1-dim. distributions ρ(x) can be generated
out of uniform random number r using simple “mapping” x = H(r).
Two explicit examples:
ρ(x) = 1

x , x ∈ (x1, x2)

x2∫
x1

dx
x = (ln x2 − ln x1)

1∫
0

dr , r = ln x−ln x1
ln x2−ln x1

∈ (0, 1),

x = exp(ln x1 + r(ln x2 − ln x1)) = x1
( x2

x1

)r ∈ (x1, x2)

ρ(x) = dx
(x−a)2+γ2 , x ∈ (x1, x2)

x2∫
x1

1
(x−a)2+γ2 = arctan((x2−a)/γ)−arctan((x1−a)/γ)

γ

1∫
0

dr ,

r = arctan((x−a)/γ)−arctan((x1−a)/γ)
arctan((x2−a)/γ)−arctan((x1−a)/γ) ∈ (0, 1),

x = x1 + γ tan
(

arctan x1−a
γ + r

[
arctan x2−a

γ − arctan x1−a
γ

])
Inverting cumulative function F (y) =

∫ y
ρ(x)dx

(a) is rarely feasible analytically;
(b) but one can also invert it numerically.
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Mapping in 1-dim. c.d.

In 1-dim case only a finite number of the distributions can be
generated using mapping within simple elementary functions:-(
1
x , lnn(x)

x , xa|a 6=−1, eax , 1
a2+x2 ,

1
a2−x2 ,

1
(a2−x2)1/2 , cos(x), ...

Quite nasty-looking distributions can be generated by mapping:
ρ(x) = (1−e−x )α−1e−x

1−(1−e−x )α , x = − ln(1 + (1− e−r )1/α).
Quite simple distributions cannot be obtained by analyt. mapping:
e−ax2

, e−αxxβ−1, c0 + c1x + c2x2 + c3x3, 1 +
√

x .
It is always possible to generate 1-dim distribution by brute force
(memorizing, parametrizing distribution numerically), however one
should know and use analytical mapping, because it is fast and allows
to change parameters in the distribution “in flight”.
NB. For e−x2

parametrization of the inverse of the cumulative funct. is available:

see Abramowitz & Stegun, eq. 26.2.22
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2-dimensional and n-dim. mapping

An example of clever 2-dim. mapping (Gaussian in radial variables):∫
dxdyρ(x , y) =

∫
dxdy 1

2πσ2 e−(x2+y2)/(2σ2) =∫ 1
0 d φ

2π

∫∞
0

1
2σ2 e−r2/(2σ2)d r2 =

∫ 1
0 d φ

2π

∫ 0
1 de−r2/(2σ2) =

∫ 1
0 dr1

∫ 1
0 dr2 1.

MAPPING (r1, r2) → (x , y), where ri ∈ (0, 1) are uniform r.n.’s is:
x(r1, r2) = (−2σ2 ln r2)

1/2 cos(2πr1),
y(r1, r2) = (−2σ2 ln r2)

1/2 sin(2πr1).

The Jacobian of the mapping transformation
∂(x,y)
∂(r1,r2)

= 2πσ2e+(x2+y2)/(2σ2) = 1
ρ(x,y)

cancels exactly the distribution!

DREAM:∫
dxn ρ(x) =

∫
(0,1)n

drn|∂(x)
∂(r) |ρ(x) =

∫
(0,1)n

drn 1, xi = xi(r1, ...rn).

If a general numerically fast method for finding such a mapping was
available, we could forget about all other MC methods!!!
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Sequential mapping

Sequential mapping in n-
dimensions usually boils
down to brute force numerical
pretabulation.
For instance Backward Evo-
lution of Sjostrand in the MC
parton shower.
In n-dimensions mapping the distribution of the

next variable (down the three) involves previously

generated variable as a parameter, as indicated in the

graph.

ρ

x

x

x 2

ρ(

ρ(

ρ(

1

3

x n

x

x

x

)1

1

1

;x2 )

x2;x3 )

ρ(x1x 2 ;xn )...

(x)
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COMBINING ELEMENTARY METHODS

COMBINING
ELEMENTARY METHODS

Combining Rejection, Branching and Mapping

Combining primitive methods leads quickly to very
complicated scenarios with subtle issues not easy to

explain and document!

You will get a flavour of that...

S. Jadach Monte Carlo Methods



university-logo

Combining Rejection and Branching (A)
Simple combination of Branching and Rejection

Combining rejection + branching.
Rejection individually in all branches,
or some:
wJ(x) = ρ(J;x)

ρ0 (J;x)
, pJ = RJ

R = 〈wJ〉P
L〈wL〉

PROOF: no need, simple superposition.
PROBLEM: pJ not known in advance.
RJ known at the end of the MC run - too
late!
Because of that problem this
arrangement is rarely used.
Also opening (temporarily) rejection loop
not easy, requires pJ → p(0)

J .
So why not put J-generation inside
rejection loop?

x

wJ

(0)(J;x)ρ

p
J

ρ(J;x)
J

J

(J;x)ρΣ
J

ρ=
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Combining Rejection and Branching (B)
Rejection return point before J-generation (see examp_branch2w.cxx)

Rejection weight w̄J = ρ(J;x)

ρ̄
(0)

(J;x)

is aware of the J-branch index;
J is “trashed” after.
PROFIT: Probabilities p̄(0)

J =
R(0)

J
R̄(0) for

simpler ρ̄(0)’s are possibly known
analytically!!!
Normalizations controlled by “bared”
probabilities and distributions, and wmax.

PROOF: Probability density dnp(x) at point x at the exit of the

algorithm (graph) is proportional to product of probability density for

the the J-th branch dnp(0)
J (x) = ρ̄(0)(J; x)dxn/R̄(0)

J times

probability of accepting event w̄J (x) = ρ(J; x)/ρ̄(0)(J; x), averaged

over all branches with probabilities p̄J .

x

wJ

(0)(J;x)ρ

J

ρ(J;x)

J

(J;x)ρΣ
J

ρ=

(0)p
J

dnp(x) = A
P
J

p̄J dnp(0)
J (x) w̄J(x) = A

P
J

R̄(0)
J

R̄(0)

ρ̄(0)(J;x)dxn

R̄(0)
J

ρ(J;x)

ρ̄(0)(J;x)
= A ρ(x)dxn

R(0)
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Combining Rejection and Branching (B) cont.
1-dim. example with two branches (see examp_branch2w.cxx)

Blue and Green areas represent distributions of two branches.
“Brick-walled” part rejected. “Solid-colour” part accepted.
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Equivalent algorithms (B) and (C)
Rejection decision point after J-trashing point, see examp_branch2ow.cxx

〈〈U〉〉 ≡
∑

J p̄J
∫ ρ̄(J;x)

R̄J
U(J; x) dxn ≡ 1

R̄

∑
J

∫
ρ̄(J; x) U(J; x) dxn

x

wJ

J

ρ(J;x)

(J;x)ρ

Jp

(B)

J

Σ

ρ(J;x)

wB(J; x) = ρ(J;x)
ρ̄(J;x)

〈〈wB〉〉 =
R P

j ρ(J; x) = R

〈〈w2
B〉〉 = 1

R̄

R P
J

ρ2(J;x)
ρ̄(J;x)

dxn

x

J

J

w

p

ρ (J;x)

(C)

(J;x)ρ

(J;x)ρ

J

Σ

Σ

wC(x) =
P

J ρ(J;x)P
J ρ̄(J;x)

〈〈wC〉〉 =
R P

j ρ(J; x) = R

〈〈w2
C〉〉 = 1

R̄

R ` P
J ρ(J;x)

´2P
J ρ̄(J;x)

dxn
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Equivalent algorithms (B) and (C)
Rejection decision point after J-trashing point, see examp_branch2ow.cxx

Rejection (of brick-walled) can be executed either
(B) separately for each branch/layer (left) or
(C) at once for both branch/layer (right), weight J-averaged.
Weight distribution in (C) nicer (no blind spots); costs more CPU time.
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Branch optimization in case of wt-ed events
Method of Kleiss&Pittau. A step towards self-adapting MCs.

In branching+rejection with “opened rejection
loop” target dist. is ρ(x). Generated primarily:
ρ̄(x) =

P
ρ̄(J; x) (mapping). Normalization

“anchor”: R̄ =
P

J R̄J =
P

J
R

ρ̄(J; x)dxn.
Integral is R = R̄〈〈w〉〉, where the average is
over branches and over integration domain. The
MC error is δR = σ√

N
= Ḡ√

N

p
〈〈w2〉〉 − 〈〈w〉〉2

“MC inefficiency” is iE = N δR2

R2 + 1 = 〈w2〉
〈w〉2

One finds: iE = 1R
ρ(x)dxn R̄

R (ρ(x))2P
J ρ̄(J;x)

dxn

Get the smallest inefficiency iE
by manipulating relative overall
normalizations of the branch
distributions ρ̄(J; x) → λJ ρ̄(J; x).

PROCEDURE: Start from λJ = 1, then
WK = 〈〈w2 ρ̄(K ;x)

R̄K

R̄
ρ̄(x)

〉〉 is calculated from the
trial MC run and for the next trial run
substitute λJ → λJ

p
WJ .

x

J

J

w

p

(J;x)ρ

(J;x)ρ

J

Σ

(C3)

ρ(x)

w = ρ(x)P
J ρ̄(J;x)
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GENERAL PURPOSE MC METHODS

GENERAL PURPOSE MC
METHODS AND TOOLS

VEGAS and FOAM
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VEGAS and FOAM compared

Both are General Purpose MC simulators/integrators
with automatic self-adapting to user-provided distribution.
Both are for MC problems in n < 100 dimensions.
Primary aim of FOAM is MC/Stochastic SIMULATION
(Weight=1 events)
Primary aim of VEGAS is MC INTEGRATION;
but was customized to provide MC events (un)weighted.
FOAM is adapting system of hyper-cells to shape of distr.
VEGAS is adapting division of each of the variables into
unequal intervals to user distr.
FOAM is included in ROOT, VEGAS in GNU libraries.
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General purpose self-adapting MC tools
SELECTED REFERENCES

VEGAS and the like
G.P. Lepage, J. Comput. Phys. 27, 195 (1978).
T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond
factorization, Comput.Phys.Commun. 120 (1999)13, eprint:
hep-ph/9806432.
S. Kawabata, Comp. Phys. Commun. 88, 309 (1995).

Cellular:
Earlier unpublished trials in 80’s by S. Kawabata, R. Kleiss and S.
Jadach.
G. I. Manankova, A. F. Tatarchenko, and F. V. Tkachev, MILXy way: How
much better than VEGAS can one integrate in many dimensions?,
1995, a Contribution to AINHEP-95, Pisa, Italy, Apr 3-8, 1995 (extended
version).
E. de Doncker and A. Gupta, “Multivariate Integration on Hypercubic
and Mesh Networks”, Parallel Computing 24 (1998) 1223.
S. Jadach, Comput.Phys.Commun. 130, 244 (2000); and
“Foam: A general purpose cellular Monte Carlo event generator”
e-Print: physics/0203033.
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VEGAS algorithm:

The integrand function in n dimensions is assumed to be fairly well
approximated by a product of functions, ρ(x) =

∏n
i=1 ρi(xi)

each one depending just on one integration variable.
The integration range of each variable is divided into k bins of
unequal width, with the binning (bin sizes) different for each variable.
The entire integration domain, that is an n-dimensional rectangle, is
divided into kn sub-rectangles.
The whole structure is explored by means of the MC generation of
random points within each sub-rectangle, with a uniform distribution.
Exploration repeated iteratively.
The binning is adjusted iteratively, such that the the ratio of the
dispersion to the average weight is minimized – variance reduction.
The “driving function” which controls binning in each direction is the
density ρ(x)2

p(x) . The grid evolves iteratively such that projection of this
function on each direction is as flat as possible. In each iteration bins
are first subdivided, integral and projections onto each axis of ρ(x)2

p(x)

are calculated and the new binning is established.
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VEGAS basic deficiencies
VEGAS is FANTASTIC but...

For a given ρ(~x) there is certain limiting value of the
MC Simulation efficiency <W>

Wmax
which cannot be

overcame by further enlarging the grid and/or number
of the MC trials.
The above failure and general inefficiency occurs for
integrands badly approximated by the product
ρ(x) =

∏n
i=1 ρi(xi).

(This limitation not present in FOAM).

S. Jadach Monte Carlo Methods



university-logo

VEGAS grid oscillations, iterations 1-10:
for a “non-factorisable” 2-dim. distribution
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FOAM algorithm

FOAM operates in “two-stroke” mode:

Exploration phase; building system of cells adapted to the
shape of the user-provided distribution
Generation WT=1 MC event series (optionally weighted)
exactly according to user distribution.
The integral value is also calculated.

In exploration cells are divided step by step into 2 daughter cells,
such that projected final MC efficiency is minimized

The choice of the division wall (position and direction) is done
with help of a short MC exploratory MC run within the cell.

Creating system of cells may take time, so there is a possibility
to dump it into a disk file and reuse many times (persistency).
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Evolution of the cell system
with the growing number of cells= 10, 70, 250, 2500.
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Evolution of the weight distribution
with the growing number of cells=200, 2000, 20k

Minimization of maximum weight, SIMULATION mode
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Cell division algorithm
is the most complicated part of FOAM algorithm

For each cell and each edge results of MC exploratory run are examined to
find the best edge and the best point of the division into 2 daughter cells.

0:25 0:50 0:75 1:000:00
0:25
0:50
0:75
1:00�(x)

x

Old �0

New �0
OLD Iloss

New Iloss

New

?

ρ(x) is from MC exploratory run

Old majorizing ρ′ for parent cell

New ρ′ for two daughter cells

OLD Rloss all area above red
line, for the parent cell

New Rloss between red line and
New ρ′, for 2 daughters

Division point ? is chosen to
MINIMIZE the INEFFICIENCY
functional Rloss!
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Comaring FOAM and VEGAS at low dimensions
Tabulated Efficiency = (AverageWeight)/(MaximumWeight)

For non-factorisable distributions FOAM is superior.

Functions at 2-dimens. Foam 1.01 Simpl. H-Rect. VEGAS
ρa(x) (diagonal ridge) 0.93 0.93 0.86 0.03
ρb(x) (circular ridge) 0.82 0.82 0.82 0.16
ρc(x) (edge of square) 0.57 1.00 1.00 0.53
Functions at 3-dimens. Foam 1.01 Simpl. H-Rect. VEGAS
ρa(x) (thin diagonal) 0.67 0.74 0.66 0.002
ρb(x) (thin sphere) 0.36 0.47 0.53 0.11
ρc(x) (surface of cube) 0.37 0.95 1.00 0.30

Results from Foam/MCell are for 5000 cells (2500 active cells) and
cell exploration with 200 MC events/cell

S. Jadach Monte Carlo Methods
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GENERAL PURPOSE MC METHODS

Asking whether FOAM or VEGAS is
better is pointless

The answer depends upon the type of the
user-distribution and the type of the problem

S. Jadach Monte Carlo Methods



university-logo

SUMMARY

Monte Carlo stochastic methods are great
tools for all multi-dimensional problems!
They are easy to learn and use.
But sophisticated MC algorithms are not
easy to construct and document.
General purpose MC tools like FOAM and
VEGAS make our live easier!

S. Jadach Monte Carlo Methods


